The nature of rodlet cells (RCs) and their functions is subject to a number of different interpretations. This review provides a detailed analysis of the parasitic and endogenous origin of these cells. Two new functional aspects of RCs are considered in detail. The possible function of RCs as immune cells was derived from studies that reported an increase in the number of RCs in fish infected with protozoan and metazoan parasites, particularly at the site of the pathogen infection and/or attachment. Accordingly, RCs represent inflammatory cells, with a similar role to eosinophile granule cells, epithelioid cells and mesothelial cells. Rodlet cells may potentially act as biomarkers. Experimental studies that examined the response of RCs in fish exposed to chemical substances such as metals and herbicides reported an increase in the number of RCs in the tissues of the fish. Fish exposed to these substances expressed myelinic figures in the cytoplasm of the RCs and various degrees of rodlet degeneration and high vacuolization of RC cytoplasm were often noticed. Further lines of research are suggested that might elucidate the true function of these enigmatic cells. # 2004 The Fisheries Society of the British Isles
Rodlet cells (RCs), and other inflammatory cells, namely eosinophile granule cells (EGCs), eosinophilic granulocytes and epithelioid cells in the liver, pancreas and peritoneal serosa of uninfected and naturally parasitized minnow Phoxinus phoxinus (Linnaeus, 1758), were studied by light and electron microscopy. Forty-eight minnows were examined and in 18 fishes encysted larvae of the nematode Raphidascaris acus (Bloch, 1779) were encountered, mainly in the pancreas. The number of larvae in the latter organ ranged from 2 to 46. Nematode larvae were encapsulated by epithelioid granulomata, and these cells displayed typical epithelial characteristics such as desmosomes and tonofilaments. EGCs and RCs characteristically surrounded the reactive foci and were suggestive of an integrated inflammatory network involving both cell types. In many instances RCs were noticed at the periphery of the pancreas, beneath the peritoneal serosa, partially or entirely surrounded by mesothelial cells. In the latter situation partially damaged RCs were present in the splancnic cavity entirely surrounded but not truly phagocytized (no phagolysosome occurred) by mesothelial cells, which shared the same ultrastructural features of epithelioid cells. This phenomenon has never been described and may represent a peculiar turnover of RCs in the pancreas likely related to the high sensitivity to damage. A significant difference (p < 0.01) in the number of RCs between uninfected and parasitized fish was noticed in the liver and pancreas. The data suggest that RCs represent an inflammatory cell type closely linked to other piscine inflammatory cells, such as EGCs, epithelioid cells and mesothelial cells.
KEY WORDS: Rodlet cells · Inflammatory cells · Phoxinus phoxinus · Helminth infection · UltrastructureResale or republication not permitted without written consent of the publisher
Rodlet cells in intestinal epithelia of infected and uninfected European eelsAnguilla anguilla from brackish and fresh water were studied by light and electron microscopy. Deropristis inflata (Trematoda) was found in eels from brackish water, whereas eels from fresh water were infected with Acanthocephalus clavula (Acanthocephala). In a comparison between uninfected and infected eels from brackish water, a higher number of rodlet cells was recorded in the intestinal epithelia of infected fish. Evidence is presented that rodlet cells secrete their contents in a holocrine manner into the lumen of the eel intestine. The occurrence of organelles within the mature rodlet cell was rare.1998 The Fisheries Society of the British Isles
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.