Cyclosporin A (CsA) is an immunosuppressive agent that inhibits the synthesis of lymphd by T lymphocytes at the level of transcription. A cytoplasmic protein, cyclophilin, is the most thoroughly studied CsA-binding protein, but its ubiquitous presence in cells of all types raises questions about its role in immunsuppression. In an attempt to ascertain the presence of a cell surface receptor, we synthesized two polyvalent macromolecular CsA derivatives, CsA-BBa-ovalbumin and CsA-BBa-aminodextran (CBD), from the product of the photochemical reaction ofCsA and 4-benzoylbenzoic acid (CsA-BBa).
We report a novel strategy, called end-product (EP) amplification, capable of enhancing the sensitivity of immunohistochemical procedures by about an order of magnitude or more. The strategy employs an antibody (anti-EP) to the product generated by the action of horseradish peroxidase on 3,y-diaminobenzidine (DAB), and can be extended to the products of other enzymes as well, e.g., alkaline phosphatase. Amplification is the consequence of the ability of anti-EP to detect the multiplicity of product moelcula resulting from the tumover of substrate by a single enzyme molecule. The subsequent detection of anti-EP was by biotinylated goat anti-rabbit antibody, followed by avidin-peroxidase and DAB or by avidin-alkaline phosphatase and Vector Red. Further amplification can be accomplished by repeated cydes of the protocol. Anti-EP was produced by immunization with a bovine serum albumin (BSA) conjugate of a soluble polymer of DAB, prepared by a carefully controlled reaction of DAB with horseradish peroxidase and hydrogen peroxide. Coupling to BSA (and to RSA) was accomplished with glutaraldehyde. The titer of anti-EP was established by ELISA.Formalin-fixed, paraffin-embedded sections of five cases of Hodgkin's disease and five tonsils with follicular hyperpla-
The 8-oxo-7,8-dihydropurines (8-oxopurines) are important cellular premutagenic lesions produced in DNA by free radicals. Specific antibodies were prepared to detect these lesions. For antigens, 8-oxo-7,8-dihydroadenosine (8-oxoAdo) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo) were synthesized from the bromonucleosides, and the immunogens were produced by conjugating these to either bovine serum albumin or rabbit serum albumin by the periodate method. Polyclonal antibodies specific for the haptens were elicited from rabbits immunized with the BSA conjugates. The antibodies to 8-oxoAdo (anti-8-oxoAdo) and 8-oxoGuo (anti-8-oxoGuo) precipitated the homologous antigens in an Ouchterlony gel diffusion assay and no cross-reactivity was observed toward the normal nucleosides or to the heterologous 8-oxopurine. Specificity was also examined by hapten inhibition of antibody reactivity with the homologous conjugates using ELISA. For anti-8-oxoAdo, the IC50 for 8-oxoAdo was 8 mumol/L and 8-bromoadenosine, guanosine, and inosine did not inhibit, even at concentrations of 1.25 mmol/L. Similarly, the IC50 for anti-8-oxoGuo for 8-oxoGuo was 0.1 mumol/L. 8-Methoxyguanosine also inhibited the reaction but was about 500-fold less effective than the eliciting hapten. Other nucleosides tested did not inhibit at concentrations up to 100 mumol/L. Both antibodies could easily detect the corresponding damage in x-irradiated f1 DNA at a dose of 7.5 Gy and both antibodies recognized the corresponding lesion in duplex DNA; however, with anti-8-oxoGuo the signal was reduced about 50% compared to single-stranded DNA. In order to determine the exact amount of each lesion produced in irradiated DNA, and to standardize the ELISA signal, both products were measured after alkaline phosphatase digestion of x-irradiated calf thymus DNA using high-pressure liquid chromatography (HPLC) coupled to an electrochemical detector. Anti-8-oxoGuo could detect ten 8-oxoG residues and anti-8-oxoAdo could detect two 8-oxoA residues per 10,000 nucleotides. Thus, these antibodies should be useful for the detection and measurement of 8-oxopurines in cellular DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.