Solid state single photon detectors are receiving more and more attention in a number of areas of applied physics: optical sensors, communications, quantum cryptography, optical ranging and Lidar, time resolved spectroscopy, opaque media imaging and ballistic photon identification. This paper reports on results of research and development in the field of solid state single photon detectors at the Czech Technical University in Prague over the last 20 years. Avalanche photodiodes specifically designed for single photon counting devices have been developed based on various semiconductor materials: Si, Ge, GaP, GaAs and InGaAs. Electronic circuits for biasing, quenching and control of these detectors have been developed and optimized for different applications. The sensitivity of solid state photon counters spans from 0.1 nanometre X-rays up to 1800 nanometres in the near infrared region. Timing resolution of solid state photon counters as high as 50 picoseconds full width at a half maximum has been achieved when detecting single photon signals. Circuits permitting operation of solid state photon counters in both single and multiple photon signal regimes have been developed and applied. The compact and rugged design, radiation resistance, and low operating voltage are attractive features of solid state photon counters in various space projects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.