We have previously found that the D5 dopamine receptor couples to a G-protein other than Gsα, and could be involved in signaling pathways other than regulation of adenylyl cyclase. To describe interactions of the D5 receptor with cellular effectors, we used GH4C1 cells transfected with cDNA for the human D5 receptor. Thyrotropin-releasing hormone (TRH, 100 nM) stimulated accumulation of inositol phosphates (IPs) fivefold in D5GH4C1 cells. Dopamine (DA, 10 µM) inhibited TRH-stimulated IP values by 29%; at higher concentrations (100 µM), maximal inhibition of 61% was observed. The D5 agonist SKF R-38393 (10 µM) mimicked this effect (28% inhibition). SCH 23390, a D5 antagonist, blocked the inhibition caused by both DA and SKF R-38393. Spiperone, a D2 receptor antagonist, did not block the inhibition. The D2 agonist (±)-2-(N-phenylethyl-N-propyl)amino-5-hydroxytetralin (PPHT) did not inhibit TRH-stimulated IP production, nor did it augment the effect of D5 agonists. The DA-mediated suppression of IP levels was not sensitive to pertussis toxin; cholera toxin blocked both TRH stimulation and DA suppression of IP accumulation in response to 100 nM TRH. Neither dibutyryl cAMP nor forskolin lowered IP formation in response to TRH. Phorbol ester decreased TRH-stimulated IP accumulation in D5GH4C1 cells; however, an inhibitor of protein kinase C (PKC) did not block the effect of DA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.