Enzyme IIImtl is part of the mannitol phosphotransferase system of Staphylococcus aureus and Staphylococcus carnosus and is phosphorylated by phosphoenolpyruvate in a reaction sequence requiring enzyme I (phosphoenolpyruvate-protein phosphotransferase) and the histidine-containing protein HPr. In this paper, we report the isolation of IIImtl from both S. aureus and S. carnosus and the characterization of the active center. After phosphorylation of IIImtl with [32P]PEP, enzyme I, and HPr, the phosphorylated protein was cleaved with endoproteinase Glu(C). The amino acid sequence of the S. aureus peptide carrying the phosphoryl group was found to be Gln-Val-Val-Ser-Thr-Phe-Met-Gly-Asn-Gly-Leu-Ala-Ile-Pro-His-Gly-Thr-Asp- Asp. The corresponding peptide from S. carnosus shows an equal sequence except that the first residue is Ala instead of Gln. These peptides both contain a single histidyl residue which we assume to carry the phosphoryl group. All proteins of the PTS so far investigated indeed carry the phosphoryl group attached to a histidyl residue. According to sodium dodecyl sulfate gels, the molecular weight of the IIImtl proteins was found to be 15,000. We have also determined the N-terminal sequence of both proteins. Comparison of the IIImtl peptide sequences and the C-terminal part of the enzyme IImtl of Escherichia coli reveals considerable sequence homology, which supports the suggestion that IImtl of E. coli is a fusion protein of a soluble III protein with a membrane-bound enzyme II. In particular, the homology of the active-center peptide of IIImtl of S. aureus and S. carnosus with the enzyme IImtl of E. coli allows one to predict the N-3 histidine phosphorylation site within the E. coli enzyme.
Histidine-containing phosphocarrier protein (HPr) is common to all of the phosphoenolpyruvate:sugar phosphotransferase systems (PTS) in Escherichia coli and SalmoneUa typhimurium, except the fructose-specific PTS. Strains which lack HPr activity (ptsH) have been characterized in the past, and it has proved difficult to delineate between tight and leaky mutants. In this study four different parameters of ptsH strains were measured: in vitro sugar phosphorylation activity of the mutant HPr; detection of 32P-labeled P-HPr; ability of monoclonal antibodies to bind mutant HPr; and sensitivity of ptsH strains to fosfomycin. Tight ptsH strains could be defined; they were fosfomycin resistant and produced no HPr protein or completely inactive mutant HPr. All leaky ptsH strains were fosfomycin sensitive, usually produced normal amounts of mutant HPr protein, and had low but measurable activity, and HPr was detectable as a phosphoprotein. This indicates that the regulatory functions of the PTS require a very low level of HPr activity (about 1%). The antibodies used to detect mutant HPr in crude extracts were two monoclonal immunoglobulin G antibodies Jel42 and Jel44. Both antibodies, which have different pls, inhibited PTS sugar phosphorylation assays, but the antibody-HPr complex could still be phosphorylated by enzyme I. Preliminary evidence suggests that the antibodies bind to two different epitopes which are in part located in a B-sheet structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.