Lattice parameters, elastic modulus, internal friction, superelasticity, and shape memory effect are studied in the vicinity of martensitic transformation (MT) exhibited by the Ni55Fe20Al25 melt-spun ribbon. In comparison to the melt-spun ribbons of other ferromagnetic shape memory alloys, Ni–Fe–Al ribbon has abnormally low elastic modulus, a record-breaking strength (>350 MPa), and large recoverable strain (up to 5%) due to both the superelastic and ordinary shape memory effects. The critical stress versus temperature phase diagram consists of two straight lines, indicating the formation of different stress-induced martensitic phases. The structural and thermodynamic results proved to be self-consistent.
We used a focused laser beam to achieve large amplitude and localized controlled actuation in a microstructure made of a ferromagnetic shape memory alloy. Significant deformation (18 µm) was achieved at low laser power (20 mW) and the amplitude of actuation could be linearly controlled with the laser power. The rapid mechanical actuation shows no apparent sign of fatigue even after a million continuous oscillatory cycles. As a possible mechanism, we propose that the deformation of structure was induced by a combination of the thermal effect and the magnetic field of the incident laser light. This is possibly the first such reported visual evidence of microactuation of materials due to the optomagnetic field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.