The normal metabolism of drugs can generate metabolites that have intrinsic chemical reactivity towards cellular molecules, and therefore have the potential to alter biological function and initiate serious adverse drug reactions. Here, we present an assessment of the current approaches used for the evaluation of chemically reactive metabolites. We also describe how these approaches are being used within the pharmaceutical industry to assess and minimize the potential of drug candidates to cause toxicity. At early stages of drug discovery, iteration between medicinal chemistry and drug metabolism can eliminate perceived reactive metabolite-mediated chemical liabilities without compromising pharmacological activity or the need for extensive safety evaluation beyond standard practices. In the future, reactive metabolite evaluation may also be useful during clinical development for improving clinical risk assessment and risk management. Currently, there remains a huge gap in our understanding of the basic mechanisms that underlie chemical stress-mediated adverse reactions in humans. This review summarizes our views on this complex topic, and includes insights into practices considered by the pharmaceutical industry.
Drug-induced hepatotoxicity represents a major clinical problem and an impediment to new medicine development. Serum biomarkers hold the potential to provide information about pathways leading to cellular responses within inaccessible tissues, which can inform the medicinal chemist and the clinician with respect to safe drug design and use. Hepatocyte apoptosis, necrosis, and innate immune activation have been defined as features of the toxicological response associated with the hepatotoxin acetaminophen (APAP). Within this investigation, we have unambiguously identified and characterized by liquid chromatography-tandem mass spectrometry differing circulating molecular forms of high-mobility group box-1 protein (HMGB1) and keratin-18 (K18), which are linked to the mechanisms and pathological changes induced by APAP in the mouse. Hypoacetylated HMGB1 (necrosis indicator), caspase-cleaved K18 (apoptosis indicator), and full-length K18 (necrosis indicator) present in serum showed strong correlations with the histological time course of cell death and was more sensitive than alanine aminotransferase activity. We have further identified a hyperacetylated form of HMGB1 (inflammatory indicator) in serum, which indicated that hepatotoxicity was associated with an inflammatory response. The inhibition of APAP-induced apoptosis and K18 cleavage by the caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp(OMe) fluoromethyl ketone are associated with increased hepatic damage, by a shift to necrotic cell death only. These findings illustrate the initial verification of K18 and HMGB1 molecular forms as serum-based sensitive tools that provide insights into the cellular dynamics involved in APAP hepatotoxicity within an inaccessible tissue. Based on these findings, potential exists for the qualification and measurement of these proteins to further assist in vitro, in vivo, and clinical bridging in toxicological research.
The recognition of the antibiotic sulfamethoxazole (SMX) by T cells is usually explained with the hapten-carrier model. However, recent investigations have revealed a MHC-restricted but processing- and metabolism-independent pathway of drug presentation. This suggested a labile, low-affinity binding of SMX to MHC-peptide complexes on APC. To study the role of covalent vs noncovalent drug presentation in SMX allergy, we analyzed the proliferative response of PBMC and T cell clones from patients with SMX allergy to SMX and its reactive oxidative metabolites SMX-hydroxylamine and nitroso-SMX. Although the great majority of T cell clones were specific for noncovalently bound SMX, PBMC and a small fraction of clones responded to nitroso-SMX-modified cells or were cross-reactive. Rapid down-regulation of TCR expression in T cell clones upon stimulation indicated a processing-independent activation irrespective of specificity for covalently or noncovalently presented Ag. In conclusion, our data show that recognition of SMX presented in covalent and noncovalent bound form is possible by the same TCR but that the former is the exception rather than the rule. The scarcity of cross-reactivity between covalently and noncovalently bound SMX suggests that the primary stimulation may be directed to the noncovalently bound SMX.
Nrf2 regulates the expression of numerous cytoprotective genes in mammalian cells. The activity of Nrf2 is regulated by the Cul3 adaptor Keap1, yet little is known regarding mechanisms of regulation of Keap1 itself. Here, we have used immunopurification of Keap1 and mass spectrometry, in addition to immunoblotting, to identify sequestosome 1 (SQSTM1) as a cellular binding partner of Keap1. SQSTM1 serves as a scaffold in various signaling pathways and shuttles polyubiquitinated proteins to the proteasomal and lysosomal degradation machineries. Ectopic expression of SQSTM1 led to a decrease in the basal protein level of Keap1 in a panel of cells. Furthermore, RNA interference (RNAi) depletion of SQSTM1 resulted in an increase in the protein level of Keap1 and a concomitant decrease in the protein level of Nrf2 in the absence of changes in Keap1 or Nrf2 mRNA levels. The increased protein level of Keap1 in cells depleted of SQSTM1 by RNAi was linked to a decrease in its rate of degradation; the half-life of Keap1 was almost doubled by RNAi depletion of SQSTM1. The decreased level of Nrf2 in cells depleted of SQSTM1 by RNAi was associated with decreases in the mRNA levels, protein levels, and function of several Nrf2-regulated cell defense genes. SQSTM1 was dispensable for the induction of the Keap1-Nrf2 pathway, as Nrf2 activation by tert-butylhydroquinone or iodoacetamide was not affected by RNAi depletion of SQSTM1. These findings demonstrate a physical and functional interaction between Keap1 and SQSTM1 and reveal an additional layer of regulation in the Keap1-Nrf2 pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.