The salicylic acid oxidation has been explained by a mechanism involving single electron transfer oxidation and single hydrogen transfer using quantum chemistry calculations at the B3LYP theory level, together with the 6-311G** basis set. These methods were employed to obtain energy (E), ionization potential (IP), bond dissociation energies (BDE), and spin density distribution of the salicylic acid. The results show no discrepant behaviors between electron and hydrogen transfer in the regioselective hydroxylation of salicylic acid by cytochrome P-450. The unpaired electron remains localized on the O 7 phenolic oxygen (0.26 and 0.38), C 1 carbon atoms at the carbonyl group (0.12 and 0.28), C 2 carbon atom at the hydroxyl group (0.15 and 0.00), C 3 carbon atom at the hydroxyl group (0.22 and 0.30), and C 5 carbon atom (0.40 and 0.41) for cation free radical and semiquinone form, respectively.Calculations of spin densities showed that chemistry reactivity is more favored in the positions C 5 [ C 3 [ C 1 to form salicylate derivatives. These results supported the salicylic acid as scavenger derivatives in the lipid peroxidation. Furthermore, we suggest a conventional proton and secondary electron abstraction, and semiquinone form by [1,5] hydrogen shift between phenol and carbonyl groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.