Ocean biological processes mediate the transport of roughly 10 petagrams of carbon from the surface to the deep ocean each year and thus play an important role in the global carbon cycle. Even so, the globally integrated rate of carbon export out of the surface ocean remains highly uncertain. Quantifying the processes underlying this biological carbon export requires a synthesis between model predictions and available observations of particulate organic carbon (POC) flux; yet the scale dissimilarities between models and observations make this synthesis difficult. Here we compare carbon export predictions from a mechanistic model with observations of POC fluxes from several data sets compiled from the literature spanning different space, time, and depth scales as well as using different observational methodologies. We optimize model parameters to provide the best match between model‐predicted and observed POC fluxes, explicitly accounting for sources of error associated with each data set. Model‐predicted globally integrated values of POC flux at the base of the euphotic layer range from 3.8 to 5.5 Pg C/year, depending on the data set used to optimize the model. Modeled carbon export pathways also vary depending on the data set used to optimize the model, as well as the satellite net primary production data product used to drive the model. These findings highlight the importance of collecting field data that average over the substantial natural temporal and spatial variability in carbon export fluxes, and advancing satellite algorithms for ocean net primary production, in order to improve predictions of biological carbon export.
Particulate organic carbon (POC) produced in the surface ocean sinks through the water column and is respired at depth, acting as a primary vector sequestering carbon in the abyssal ocean. Atmospheric carbon dioxide levels are sensitive to the length (depth) scale over which respiration converts POC back to inorganic carbon, because shallower waters exchange with the atmosphere more rapidly than deeper ones. However, estimates of this carbon regeneration length scale and its spatiotemporal variability are limited, hindering the ability to characterize its sensitivity to environmental conditions. Here, we present a zonal section of POC fluxes at high vertical and spatial resolution from the GEOTRACES GP16 transect in the eastern tropical South Pacific, based on normalization to the radiogenic thorium isotope 230 Th. We find shallower carbon regeneration length scales than previous estimates for the oligotrophic South Pacific gyre, indicating less efficient carbon transfer to the deep ocean. Carbon regeneration is strongly inhibited within suboxic waters near the Peru coast. Canonical Martin curve power laws inadequately capture POC flux profiles at suboxic stations. We instead fit these profiles using an exponential function with flux preserved at depth, finding shallow regeneration but high POC sequestration below 1,000 m. Both regeneration length scales and POC flux at depth closely track the depths at which oxygen concentrations approach zero. Our findings imply that climate warming will result in reduced ocean carbon storage due to expanding oligotrophic gyres, but opposing effects on ocean carbon storage from expanding suboxic waters will require modeling and future work to disentangle.biological pump | ocean carbon storage | oxygen-deficient zones | GEOTRACES | thorium T he oceanic biological pump encompasses a series of processes by which phytoplankton at the sea surface photosynthetically fix carbon dioxide (CO 2 ) to form particulate organic carbon (POC), a portion of which is exported from the upper ocean and sinks to depth, where it is regenerated by microbial respiration (1, 2). The first two components of the biological pump, primary production and export of POC from the upper ocean, have been sufficiently characterized to enable their parametrization in terms of variables that can be measured by satellites, allowing for comprehensive estimates of their global rates and spatiotemporal variability (3-6). However, the fate of exported POC upon sinking into the ocean interior has proved to be an elusive oceanographic target. Because the time scale that waters are sequestered from the atmosphere increases with depth, the length scale over which POC regeneration occurs exerts a strong control on oceanic carbon storage and atmospheric CO 2 levels (7). Consequently, assessing how environmental conditions influence POC regeneration length scales provides critical insights that can be incorporated into ocean carbon cycle models to improve projections of future oceanic CO 2 uptake, including the response to glo...
The depth-attenuation of sinking particulate organic carbon (POC) is of particular importance for the ocean's role in the global carbon cycle. Numerous idealized flux-vs.-depth relationships are available to parameterize this process in Earth System Models. Here we show that these relationships are statistically indistinguishable from available POC flux profile data. Despite their quantitative similarity, we also show these relationships have very different implications for the flux leaving the upper ocean, as well as for the mechanisms governing POC flux. We discuss how this tension might be addressed both observationally and in modeling studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.