The model tuning through sensitivity analysis is a prominent procedure to assess the structural behavior and dynamic characteristics of cable-stayed bridges. Most of the previous sensitivity-based model tuning methods are automatic iterative processes; however, the results of recent studies show that the most reasonable results are achievable by applying the manual methods to update the analytical model of cable-stayed bridges. This paper presents a model updating algorithm for highly redundant cable-stayed bridges that can be used as an iterative manual procedure. The updating parameters are selected through the sensitivity analysis which helps to better understand the structural behavior of the bridge. The finite element model of Tatara Bridge is considered for the numerical studies. The results of the simulations indicate the efficiency and applicability of the presented manual tuning method for updating the finite element model of cable-stayed bridges. The new aspects regarding effective material and structural parameters and model tuning procedure presented in this paper will be useful for analyzing and model updating of cable-stayed bridges.
Cable-stayed bridges are one of the most popular types of long-span bridges. The structural behaviour of cable-stayed bridges is sensitive to the load distribution between the girder, pylons, and cables. The determination of pretensioning cable stresses is critical in the cable-stayed bridge design procedure. By finding the optimum stresses in cables, the load and moment distribution of the bridge can be improved. In recent years, different research works have studied iterative and modern methods to find optimum stresses of cables. However, most of the proposed methods have limitations in optimising the structural performance of cable-stayed bridges. This paper presents a multiconstraint optimisation method to specify the optimum cable forces in cable-stayed bridges. The proposed optimisation method produces less bending moments and stresses in the bridge members and requires shorter simulation time than other proposed methods. The results of comparative study show that the proposed method is more successful in restricting the deck and pylon displacements and providing uniform deck moment distribution than unit load method (ULM). The final design of cable-stayed bridges can be optimised considerably through proposed multiconstraint optimisation method.
Finite element (FE) modelling is a prominent way to simulate both static and dynamic characteristics of cable-stayed bridges to understand their structural complexities. Many initial FE models have not been successful in the analysis of the structural behaviour of cable-stayed bridges. This paper presents the details of an updated FE modelling procedure for long-span cable-stayed bridges. The design information of Tatara Bridge with an 850-m main span is considered for numerical studies. The dynamic properties of the FE model, including mode shapes and natural frequencies, are compared with field vibration test results to validate the presented modelling process. Sensitivity analysis of structural parameters is also applied to update effective parameters and understand the structural behaviour of the bridge. The new and beneficial aspects presented in this paper regarding FE modelling procedure and finding effective material and structural parameters will be useful for future design and analysis of cable-stayed bridges.
Cable-stayed bridges have been developing rapidly in the last decade and have become one of the most popular types of long-span bridges. One of the important issues in the design and analysis of cable-stayed bridges is determining the pre-tensioning cable forces that optimize the structural performance of the bridge. Appropriate pre-tensioning cable forces improve the damaging effect of unbalanced loading due to the deck dead load. Because the cable-stayed structure is a highly undetermined system, there is no unique solution for directly calculating the initial cable forces. Numerous studies have been conducted on the specification of cable pre-tensioning forces for cable-stayed bridges. However, most of the proposed methods are limited in their ability to optimize the structural performance. This paper presents an effective multi-constraint optimization strategy for cable-stayed bridges based on the application of an inverse problem through unit load method (ULM). The proposed method results in less stresses in the bridge members, more stability and a shorter simulation time than the existing approaches. The finite element (FE) model of the Tatara Bridge in Japan is considered in this study. The results show that the proposed method successfully restricts the pylon displacement and establishes a uniform deck moment distribution in the simulated cable-stayed bridge; thus, it might be a useful tool for designing other long-span cable-stayed bridges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.