We describe in detail the digital formats in which microbarograph array data are recorded at Alexandria Laboratories. Brief summaries are presented of 32 computer programs for altering the data formats, performing signal detection and analysis in both the time domain and the frequency-wave number domain, and for various theoretical calculations involving the acoustic radiation from explosion sources in a layered atmosphere. An example is included of the write-ups and flow charts of these programs.
We present a novel and thorough simulation technique to understand image charge generated from charged particles on a printed-circuit-board detector. We also describe a custom differential amplifier to exploit the near-differential input to improve the signal-to-noise-ratio of the measured image charge. The simulation technique analyzes how different parameters such as the position, velocity, and charge magnitude of a particle affect the image charge and the amplifier output. It also enables the designer to directly import signals into circuit simulation software to analyze the full signal conversion process from the image charge to the amplifier output. A novel measurement setup using a Venturi vacuum system injects single charged particles (with diameters in the 100 s of microns range) through a PCB detector containing patterned electrodes to verify our simulation technique and amplifier performance. The measured differential amplifier presented here exhibits a gain of 7.96 µV/e− and a single-pass noise floor of 1030 e−, which is about 13× lower than that of the referenced commercial amplifier. The amplifier also has the capability to reach a single-pass noise floor lower than 140 e−, which has been shown in Cadence simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.