Trinucleotide expansions cause disease by both protein-and RNAmediated mechanisms. Unexpectedly, we discovered that CAG expansion constructs express homopolymeric polyglutamine, polyalanine, and polyserine proteins in the absence of an ATG start codon. This repeat-associated non-ATG translation (RAN translation) occurs across long, hairpin-forming repeats in transfected cells or when expansion constructs are integrated into the genome in lentiviral-transduced cells and brains. Additionally, we show that RAN translation across human spinocerebellar ataxia type 8 (SCA8) and myotonic dystrophy type 1 (DM1) CAG expansion transcripts results in the accumulation of SCA8 polyalanine and DM1 polyglutamine expansion proteins in previously established SCA8 and DM1 mouse models and human tissue. These results have implications for understanding fundamental mechanisms of gene expression. Moreover, these toxic, unexpected, homopolymeric proteins now should be considered in pathogenic models of microsatellite disorders.T ranslation of mRNA into protein is an exquisitely regulated, almost error-free process. Well-established rules of translational initiation have been used as a cornerstone in biology to understand gene expression and to predict the consequences of disease-causing mutations (1). For microsatellite expansion disorders, mutations within or outside ATG-initiated ORFs are thought to cause disease either by protein gain-of-function, protein loss-of-function, or RNA gain-of-function mechanisms (2, 3).Microsatellite expansion mutations that express polyglutamine (polyGln) expansion proteins include Huntington disease (Huntingtin, HD), spinal bulbar muscular atrophy, and spinocerebellar ataxia types 1, 2, 3, 6, 7, and 17. Since the discovery of these CAG·CTG expansion mutations, efforts to understand disease mechanisms have focused on elucidating the molecular effects of the polyGln proteins expressed from these loci. Although these polyGln expansion proteins bear no similarity to each other apart from the polyGln tract, a hallmark of these diseases is protein accumulation and aggregation in nuclear or cytoplasmic inclusions. Surprisingly, although the polyGln expansion proteins are widely expressed in the CNS and other tissues, only restricted populations of neurons are vulnerable in each disease (3).Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are the best-characterized examples of RNA-mediated expansion disorders (2). The mutation causing DM1 is a CTG-repeat expansion located in the 3′ UTR of the dystrophia myotonica-protein kinase (DMPK) gene. Although DM1 can be clinically more severe than DM2, the discovery of the DM2 mutation and several mouse models provide strong support that many features of these diseases result from RNA gain-of-function effects in which the dysregulation of RNA-binding proteins is mediated by the expression of CUG and CCUG transcripts (4). Additionally, RNA gain-of-function effects have been reported for CGG and CAG expansion RNAs (5, 6).Both RNA and protein mechanisms appear to operate...
Myotonic dystrophy type 1 (DM1) is caused by an unstable CTG repeat expansion in the 3′UTR of the DM protein kinase (DMPK) gene. DMPK transcripts carrying CUG expansions form nuclear foci and affect splicing regulation of various RNA transcripts. Furthermore, bidirectional transcription over the DMPK gene and non-conventional RNA translation of repeated transcripts have been described in DM1. It is clear now that this disease may involve multiple pathogenic pathways including changes in gene expression, RNA stability and splicing regulation, protein translation, and micro–RNA metabolism. We previously generated transgenic mice with 45-kb of the DM1 locus and >300 CTG repeats (DM300 mice). After successive breeding and a high level of CTG repeat instability, we obtained transgenic mice carrying >1,000 CTG (DMSXL mice). Here we described for the first time the expression pattern of the DMPK sense transcripts in DMSXL and human tissues. Interestingly, we also demonstrate that DMPK antisense transcripts are expressed in various DMSXL and human tissues, and that both sense and antisense transcripts accumulate in independent nuclear foci that do not co-localize together. Molecular features of DM1-associated RNA toxicity in DMSXL mice (such as foci accumulation and mild missplicing), were associated with high mortality, growth retardation, and muscle defects (abnormal histopathology, reduced muscle strength, and lower motor performances). We have found that lower levels of IGFBP-3 may contribute to DMSXL growth retardation, while increased proteasome activity may affect muscle function. These data demonstrate that the human DM1 locus carrying very large expansions induced a variety of molecular and physiological defects in transgenic mice, reflecting DM1 to a certain extent. As a result, DMSXL mice provide an animal tool to decipher various aspects of the disease mechanisms. In addition, these mice can be used to test the preclinical impact of systemic therapeutic strategies on molecular and physiological phenotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.