Over a period of roughly 40 days, starting on 8 July 2000, a caldera structure 1.7 kilometers in diameter developed by means of gradual depression and expansion of the summit crater at Miyake Island, Japan. At the same time, very-long-period (VLP) seismic signals were observed once or twice a day. Source mechanism analyses of the VLP signals show that the moment tensor solutions are smooth step functions over a time scale of 50 seconds, with dominant volumetric change components. We developed a model to explain the caldera and the VLP signals, in which a vertical piston of solid materials in the conduit is intermittently sucked into the magma chamber by lateral magma outflow. This model offers potential for making quantitative estimations of the characteristic physical properties of magma systems.
We investigate the faulting process of the aftershock region of the 2000 western Tottori earthquake (M w 6.6) by combining aftershock hypocenters and moment tensor solutions. Aftershock locations were precisely determined by the double difference method using P-and S-phase arrival data of the Japan Meteorological Agency unified catalog. By combining the relocated hypocenters and moment tensor solutions of aftershocks by broadband waveform inversion of FREESIA (F-net), we successfully resolved very detailed fault structures activated by the mainshock. The estimated fault model resolves 15 individual fault segments that are consistent with both aftershock distribution and focal mechanism solutions. Rupture in the mainshock was principally confined to the three fault elements in the southern half of the zone, which is also where the earliest aftershocks concentrate. With time, the northern part of the zone becomes activated, which is also reflected in the postseismic deformation field. From the stress tensor analysis of aftershock focal mechanisms, we found a rather uniform stress field in the aftershock region, although fault strikes were scattered. The maximum stress direction is N107ЊE, which is consistent with the tectonic stress field in this region. In the northern part of the fault, where no slip occurred during the mainshock but postseismic slip was observed, the maximum stress direction of N130ЊE was possible as an alternative solution of stress tensor inversion.
After the occurrence of the 2011 magnitude 9 Tohoku earthquake, the seismicity in the overriding plate changed. The seismicity appears to form distinct belts. From the spatiotemporal distribution of hypocenters, we can quantify the evolution of seismicity after the 2011 Tohoku earthquake. In some earthquake swarms near Sendai (Nagamachi-Rifu fault), Moriyoshi-zan volcano, Senya fault, and the Yamagata-Fukushima border (Aizu-Kitakata area, west of Azuma volcano), we can observe temporal expansion of the focal area. This temporal expansion is attributed to fluid diffusion. Observed diffusivity would correspond to the permeability of about 10 À15 (m 2 ). We can detect the area from which fluid migrates as a seismic low-velocity area. In the lower crust, we found seismic low-velocity areas, which appear to be elongated along N-S or NE-SW, the strike of the island arc. These seismic low-velocity areas are located not only beneath the volcanic front but also beneath the fore-arc region. Seismic activity in the upper crust tends to be high above these low-velocity areas in the lower crust. Most of the shallow earthquakes after the 2011 Tohoku earthquake are located above the seismic low-velocity areas. We thus suggest fluid pressure changes are responsible for the belts of seismicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.