A large number of effector candidates have been identified recently in powdery mildew fungi. However, their roles and how they perform their functions remain unresolved. In this study, we made use of host-induced gene silencing and confirmed that the secreted barley powdery mildew effector candidate, CSEP0055, contributes to the aggressiveness of the fungus. This result suggests that CSEP0055 is involved in the suppression of plant defence. A yeast two-hybrid screen indicated that CSEP0055 interacts with members of the barley pathogenesis-related protein families, PR1 and PR17. Interaction with PR17c was confirmed by bimolecular fluorescence complementation analyses. Down-regulation and over-expression of PR17c in epidermal cells of barley confirmed that this protein is important for penetration resistance against the powdery mildew fungus. In line with this, PR17c was found to be apoplastic, localizing to the papillae formed in response to this fungus. The CSEP0055 transcript did not start to accumulate until 24 h after inoculation. This suggests that this gene is expressed too late to influence primary penetration events, but rather sustains the fungus at sites of secondary penetration, where PR17c appears to be able to accumulate.
SUMMARYAcidification of the cell wall space outside the plasma membrane is required for plant growth and is the result of proton extrusion by the plasma membrane-localized H + -ATPases. Here we show that the major plasma membrane proton pumps in Arabidopsis, AHA1 and AHA2, interact directly in vitro and in planta with PSY1R, a receptor kinase of the plasma membrane that serves as a receptor for the peptide growth hormone PSY1. The intracellular protein kinase domain of PSY1R phosphorylates AHA2/AHA1 at Thr-881, situated in the autoinhibitory region I of the C-terminal domain. When expressed in a yeast heterologous expression system, the introduction of a negative charge at this position caused pump activation. Application of PSY1 to plant seedlings induced rapid in planta phosphorylation at Thr-881, concomitant with an instantaneous increase in proton efflux from roots. The direct interaction between AHA2 and PSY1R observed might provide a general paradigm for regulation of plasma membrane proton transport by receptor kinases.
Acidification of the apoplastic space facilitates cell wall loosening and is therefore a key step in cell expansion. PSY1 is a growth-promoting secreted tyrosine-sulfated glycopeptide whose receptor directly phosphorylates and activates the plasma membrane H +-ATPase, which results in acidification and initiates cellular expansion. Although the mechanism is not clear, the Rapid Alkalinization Factor (RALF) family of small, secreted peptides inhibits the plasma membrane H +-ATPase, leading to alkalinization of the apoplastic space and reduced growth. Here we show that treating Arabidopsis thaliana roots with PSY1 induced the transcription of genes encoding the RALF peptides RALF33 and RALFL36. A rapid burst of intracellular Ca 2+ preceded apoplastic alkalinization in roots triggered by RALFs, with peptide-specific signatures. Ca 2+ channel blockers abolished RALF-induced alkalinization, indicating that the Ca 2+ signal is an obligatory part of the response and that it precedes alkalinization. As expected, fer mutants deficient in the RALF receptor FERONIA did not respond to RALF33. However, we detected both Ca 2+ and H + signatures in fer mutants upon treatment with RALFL36. Our results suggest that different RALF peptides induce extracellular alkalinization by distinct mechanisms that may involve different receptors.
Small post-translationally modified peptides are gaining increasing attention as important signaling molecules in plant development. In the family of plant peptides containing tyrosine sulfation (PSYs), only PSY1 has been characterized at the mature level as an 18-amino-acid peptide, carrying one sulfated tyrosine, and involved in cell elongation. This review presents seven additional homologs in Arabidopsis all sharing high conservation in the active peptide domain, and it shows that PSY peptides are found in all higher plants and mosses. It is proposed that all eight PSY homologs are post-translationally modified to carry a sulfated tyrosine and that subtilisin-like subtilases (SBTs) are involved in the processing of PSY propeptides. The PSY peptides show differential expression patterns indicating that they serve several distinct functions in plant development. PSY peptides seem to be at least partly regulated at the transcriptional level, as their expression is greatly influenced by developmental factors. Finally, a model including a receptor in addition to PSY1R is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.