The main motivation of this work is to study and obtain some reversible and DNA codes of length n with better parameters. Here, we first investigate the structure of cyclic and skew cyclic codes over the chain ring R:=F4[v]/⟨v3⟩. We show an association between the codons and the elements of R using a Gray map. Under this Gray map, we study reversible and DNA codes of length n. Finally, several new DNA codes are obtained that have improved parameters than previously known codes. We also determine the Hamming and the Edit distances of these codes.
<p style='text-indent:20px;'>For an odd prime <inline-formula><tex-math id="M1">\begin{document}$ p $\end{document}</tex-math></inline-formula> and positive integers <inline-formula><tex-math id="M2">\begin{document}$ m $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M3">\begin{document}$ \ell $\end{document}</tex-math></inline-formula>, let <inline-formula><tex-math id="M4">\begin{document}$ \mathbb{F}_{p^m} $\end{document}</tex-math></inline-formula> be the finite field with <inline-formula><tex-math id="M5">\begin{document}$ p^{m} $\end{document}</tex-math></inline-formula> elements and <inline-formula><tex-math id="M6">\begin{document}$ R_{\ell,m} = \mathbb{F}_{p^m}[v_1,v_2,\dots,v_{\ell}]/\langle v^{2}_{i}-1, v_{i}v_{j}-v_{j}v_{i}\rangle_{1\leq i, j\leq \ell} $\end{document}</tex-math></inline-formula>. Thus <inline-formula><tex-math id="M7">\begin{document}$ R_{\ell,m} $\end{document}</tex-math></inline-formula> is a finite commutative non-chain ring of order <inline-formula><tex-math id="M8">\begin{document}$ p^{2^{\ell} m} $\end{document}</tex-math></inline-formula> with characteristic <inline-formula><tex-math id="M9">\begin{document}$ p $\end{document}</tex-math></inline-formula>. In this paper, we aim to construct quantum codes from skew constacyclic codes over <inline-formula><tex-math id="M10">\begin{document}$ R_{\ell,m} $\end{document}</tex-math></inline-formula>. First, we discuss the structures of skew constacyclic codes and determine their Euclidean dual codes. Then a relation between these codes and their Euclidean duals has been obtained. Finally, with the help of a duality-preserving Gray map and the CSS construction, many MDS and better non-binary quantum codes are obtained as compared to the best-known quantum codes available in the literature.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.