Starting with metal dithiocarbamate complexes, we synthesize colloidal Cu(2)ZnSnS(4) (CZTS) nanocrystals with diameters ranging from 2 to 7 nm. Structural and Raman scattering data confirm that CZTS is obtained rather than other possible material phases. The optical absorption spectra of nanocrystals with diameters less than 3 nm show a shift to higher energy due to quantum confinement.
Copper zinc tin sulfide (Cu 2 ZnSnS 4 or CZTS) is a potential candidate for next generation thin film solar cells because it contains abundant and nontoxic elements and exhibits high light absorption. Thin films of CZTS are typically synthesized by sulfidizing a stack of zinc, copper, and tin films. In addition to CZTS, a variety of binary and ternary metal sulfides can form and distinguishing among phases with similar crystal structure can be difficult. Herein, the authors show that confocal Raman spectroscopy and imaging can distinguish between CZTS and the other binary and ternary sulfides. Specifically, Raman spectroscopy was used to detect and distinguish between CZTS (338 cm À1), Cu 2 SnS 3 (298 cm À1), and Cu 4 SnS 4 (318 cm À1) phases through their characteristic scattering peaks. Confocal Raman spectroscopy was then used to image the distribution of coexisting phases and is demonstrated to be a useful tool for examining the heterogeneity of CZTS films. The authors show that, during sulfidation of a zinc/copper/tin film stack, ternary sulfides of copper and tin, such as Cu 2 SnS 3 form first and are then converted to CZTS. The reason for formation of Cu 2 SnS 3 as an intermediary to CZTS is the strong tendency of copper and tin to form intermetallic alloys upon evaporation. These alloys sulfidize and form copper tin sulfides first, and then eventually convert to CZTS in the presence of zinc. As a consequence, films sulfidized for 8 h at 400 C contain both CZTS and Cu 2 SnS 3 , whereas films sulfidized at 500 C contain nearly phase-pure CZTS. In addition, using Cu Ka radiation, the authors identify three CZTS X-ray diffraction peaks at 37.1 [(202)], 38 [(211)], and 44.9 [(105) and (213)], which are absent in ZnS and very weak in Cu 2 SnS 3. V
The electronic structure, lattice dynamics, and Raman spectra of the kesterite, stannite, and pre-mixed Cu-Au (PMCA) structures of Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) were calculated using density functional theory (DFT). Differences in longitudinal and transverse optical (LO-TO) splitting in kesterite, stannite, and PMCA structures can be used to differentiate them. The Γ-point phonon frequencies, which give rise to Raman scattering, exhibit small but measurable shifts, for these three structures. Experimentally measured Raman scattering from CZTS and CZTSe thin films were examined in light of DFT calculations and deconvoluted to explain subtle shifts and asymmetric line shapes often observed in CZTS and CZTSe Raman spectra. Raman spectroscopy in conjunction with ab initio calculations can be used to differentiate between kesterite, stannite, and PMCA structures of CZTS and CZTSe.
We prepare Ag(2)Se nanocrystals with average diameters between 2.7 and 10.4 nm that exhibit narrow optical absorption features in the near to mid infrared. We demonstrate that these features are broadly tunable due to quantum confinement. They provide the longest wavelength absorption peaks (6.5 μm) yet reported for colloidal nanocrystals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.