During the industrial stabilization process, lactic acid bacteria are subjected to several stressful conditions. Tolerance to dehydration differs among lactic acid bacteria and the determining factors remain largely unknown. Lactobacillus coryniformis Si3 prevents spoilage by mold due to production of acids and specific antifungal compounds. This strain could be added as a biopreservative in feed systems, e.g. silage. We studied the survival of Lb. coryniformis Si3 after freeze-drying in a 10% skim milk and 5% sucrose formulation following different fermentation pH values and temperatures. Initially, a response surface methodology was employed to optimize final cell density and growth rate. At optimal pH and temperature (pH 5.5 and 34 degrees C), the freeze-drying survival of Lb. coryniformis Si3 was 67% (+/-6%). The influence of temperature or pH stress in late logarithmic phase was dependent upon the nature of the stress applied. Heat stress (42 degrees C) did not influence freeze-drying survival, whereas mild cold- (26 degrees C), base- (pH 6.5), and acid- (pH 4.5) stress significantly reduced survival. Freeze-drying survival rates varied fourfold, with the lowest survival following mild cold stress (26 degrees C) prior to freeze-drying and the highest survival after optimal growth or after mild heat (42 degrees C) stress. Levels of different membrane fatty acids were analyzed to determine the adaptive response in this strain. Fatty acids changed with altered fermentation conditions and the degree of membrane lipid saturation decreased when the cells were subjected to stress. This study shows the importance of selecting appropriate fermentation conditions to maximize freeze-drying viability of Lb. coryniformis as well as the effects of various unfavorable conditions during growth on freeze-drying survival.
Aims: To investigate the effect of freeze‐dried Lactobacillus coryniformis Si3 on storage stability by adding polymers to sucrose‐based formulations and to examine the relationship between amorphous matrix stability and cell viability.
Methods and Results: The resistance to moisture‐induced sucrose crystallization and effects on the glass transition temperature (Tg) by the addition of polymers to the formulation were determined by different calorimetric techniques. Both polymers increased the amorphous matrix stability compared to the control, and poly(vinyl)pyrrolidone K90 was more effective in increasing amorphous stability than Ficoll 400. The viability of Lact. coryniformis Si3 after storage was investigated by plate counts following exposure to different moisture levels and temperatures for up to 3 months. The polymers enhanced the cellular viability to different degrees, dependent upon polymer and storage condition.
Conclusions: Polymers can be used to enhance the stability of freeze‐dried Lact. coryniformis Si3 products, but cell viability and matrix stability do not always correlate. The general rule of thumb to keep a highly amorphous product 50° below its Tg for overall stability seemed to apply for this type of bacterial products. We showed that by combining thermal analysis with plate counts, it was possible to determine storage conditions where cell viability and matrix stability were kept high.
Significance and Impact of the Study: The results will aid in the rational formulation design and proper determination of storage conditions for freeze‐dried and highly amorphous lactic acid bacteria formulations. We propose a hypothesis of reason for different stabilizing effects on the cells by the different polymers based on our findings and previous findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.