We consider the problem of maintaining -approximate counts and quantiles over a stream sliding window using limited space. We consider two types of sliding windows depending on whether the number of elements N in the window is fixed (fixed-size sliding window) or variable (variable-size sliding window). In a fixed-size sliding window, both the ends of the window slide synchronously over the stream. In a variable-size sliding window, an adversary slides the window ends independently, and therefore has the ability to vary the number of elements N in the window.We present various deterministic and randomized algorithms for approximate counts and quantiles. All of our algorithms require O ( 1 polylog( 1 , N )) space. For quantiles, this space requirement is an improvement over the previous best bound of O( 1 2 polylog( 1 , N )). We believe that no previous work on space-efficient approximate counts over sliding windows exists.
We offer an overview of current Web search engine design. After introducing a generic search engine architecture, we examine each engine component in turn. We cover crawling, local Web page storage, indexing, and the use of link analysis for boosting search performance. The most common design and implementation techniques for each of these components are presented. For this presentation we draw from the literature and from our own experimental search engine testbed. Emphasis is on introducing the fundamental concepts and the results of several performance analyses we conducted to compare different designs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.