This paper presents a statistical and topological study of a complex turbulent flow over a backward-facing step by means of direct and large-eddy simulations. Direct simulations are first performed for an isothermal two-dimensional case. In this case, shedding of coherent vortices in the mixing layer is demonstrated. Both direct and large-eddy simulations are then carried out in three dimensions. The subgrid-scale model used is the structure-function model proposed by Métais & Lesieur (1992). Lowstep computations corresponding to the geometry of Eaton & Johnston's (1980) laboratory experiment give turbulence statistics in better agreement with the experimental data than both Smagorinsky's method and K-ε modelling. Furthermore, calculations for a high step show that the eddy structure of the flow presents striking analogies with forced plane mixing layers: large billows are shed behind the step with intense longitudinal vortices strained between them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.