On the basis of theoretical structural and comparative studies of various avian leukosis virus SU (surface) envelope proteins, we have identified four small regions (I, II, III, and IV) in their receptor-binding domains that could potentially be involved in binding to receptors. From the envelope gene of an avian leukosis virus of subgroup A, we have constructed a set of SU mutants in which these regions were replaced by the coding sequence of FLA16, a 16-amino-acid RGD-containing peptide known to be the target for several cellular integrin receptors. Helper-free retroviral particles carrying a neo-lacZ retroviral vector were produced with the mutant envelopes. SU mutants in which regions III and IV were substituted yielded normal levels of envelope precursors but were not detectably processed or incorporated in viral particles. In contrast, substitutions in regions I and II did not affect the processing and the viral incorporation of SU mutants. When FLA16 was inserted in region II, it could be detected with antibodies against FLA16 synthetic peptide, but only when viral particles were deglycosylated. Viral particles with envelopes mutated in region I or II were able to infect avian cells through the subgroup A receptor at levels similar to those of the wild type. When viruses with envelopes containing FLA16 peptide in region II were applied to plastic dishes, they were found to promote binding of mammalian cells resistant to infection by subgroup A avian leukosis viruses but expressing the integrins recognized by FLA16. Deglycosylated helper-free viruses obtained by mild treatment with N-glycosidase F have been used to infect these mammalian cells, and infections have been monitored by neomycin selection. No neomycin-resistant clones could be obtained after infection by viruses with wild-type envelopes. Conversely, colonies were obtained after infection by viruses with envelopes bearing FLA16 in region II, and the genome of the retroviral vector was found correctly integrated in cell DNA of these colonies. By using a blocking peptide containing the minimal adhesive RGD sequence contained in FLA16, we have shown that preincubation of target cells could specifically inhibit infection by viruses with FLA16.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.