This paper presents the issue of determining the blast load on an engineering structure. In cases of industrial accidents or terrorist attacks, in many cases it is necessary to determine the necessary explosion parameters to determine the response of the structure, preferably in a simple and time-saving manner. In such a way, the empirical relationships can be used to estimate the selected parameters of the explosion load. Many empirical relationships have been derived in the past, but not all are suitable for different types of explosions. This article compares and validates experimentally determined selected explosion parameters for the chosen explosive with empirical relationships. For comparison, three already verified and frequently used calculation procedures (Kingery, Kinney, Henrych) and one newly derived procedure (PECH) were used. As part of the experimental measurements, blast wave explosion parameters for small charges were determined for near-field explosions. The general-purpose plastic explosive Semtex 10-SE was used for the experiments. The results of the comparative study presented in this article demonstrate the importance of taking these procedures into account for a reliable determination of the effects of blast actions on buildings.
Traditional methodologies for precise inspection of bridges (pavement, beams, column cap, column, joints and inside box girder, etc.) with By-bridge equipment, Aerial Work Platform (AWP) or via ropes have several limits that can be overcome by using Unmanned Aerial Vehicles (UAVs). The constant development in this field allows us to go beyond the manual control and the use of a single UAV. In the context of inspection rules, this research provides new inputs to the multilevel approach used today and to the methods of structural inspection with drones. Today, UAV-based inspections are limited by manual and/or semi-automatic control with many restrictions on trajectory settings, especially for areas of difficult access with Global Navigation Satellite Systems (GNSS) denied that still require the intervention of a human operator. This work proposes the use of autonomous navigation with a fleet of UAVs for infrastructural inspections. Starting from a digital twin, a solution is provided to problems such as the definition of a set of reference trajectories and the design of a position controller. A workflow to integrate a generic Bridge Management System (BMS) with this type of approach is provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.