The protein-adsorbing and -repelling properties of various smart nanometer-thin polymer brushes containing poly(N-isopropylacrylamide) and poly(acrylic acid) with high potential for biosensing and biomedical applications are studied by in situ infrared-spectroscopic ellipsometry (IRSE). IRSE is a highly sensitive nondestructive technique that allows protein adsorption on polymer brushes to be investigated in an aqueous environment as external stimuli, such as temperature and pH, are varied. These changes are relevant to conditions for regulation of protein adsorption and desorption for biotechnology, biocatalysis, and bioanalytical applications. Here brushes are used as model surfaces for controlling protein adsorption of human serum albumin and human fibrinogen. The important finding of this work is that IRSE in the in situ experiments in protein solutions can distinguish between contributions of polymer brushes and proteins. The vibrational bands of the polymers provide insights into the hydration state of the brushes, whereas the protein-specific amide bands are related to changes of the protein secondary structure.
Temperature-responsive oxazoline-based polymer brushes have gained increased attention as biocompatible surfaces. In aqueous environment, they can be tuned between hydrophilic and hydrophobic behavior triggered by a temperature stimulus. This transition is connected with changes in molecule–solvent interactions and results in a switching of the brushes between swollen and collapsed states. This work studies the temperature-dependent interactions between poly(2-oxazoline) brushes and water. In detail, thermoresponsive poly(2-cyclopropyl-2-oxazoline), nonresponsive hydrophilic poly(2-methyl-2-oxazoline), as well as a copolymer of the two were investigated with in situ infrared ellipsometry. Focus was put on interactions of the brushes' carbonyl groups with water molecules. Different polymer–water interactions could be observed and assigned to hydrogen bonding between C=O groups and water molecules. The switching behavior of the brushes in the range of 20–45 °C was identified by frequency shifts and intensity changes of the amide I band.
We significantly improve the infrared analysis of ultrathin films in aqueous environments by employing in situ infrared ellipsometry. Combining it with rigorous optical modeling avoids otherwise typical misinterpretations of spectral features and enables the simultaneous quantification of chemical composition, hydration states, structure, and molecular interactions. We apply this approach to study covalently end-grafted, nanometer-thin brushes of poly(N-isopropylacrylamide), a thermoresponsive model polymer for proteins at solid-liquid interfaces. Quantitative analyses are based on a dielectric layer model that accounts for film swelling and deswelling, hydration of hydrophilic amide and hydrophobic isopropyl side groups, as well as molecular interactions of the polymer's amide moieties. We thereby quantify the hydration and structure dependence of intra- and intermolecular C═O···H-N and C═O···HO hydrogen bonds, elucidating their role in the brush's temperature-induced phase separation. The presented method is directly applicable to functional and biorelated films like polymer and polypeptide layers, which is of topical interest for interface studies, such as membrane processes and protein unfolding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.