Emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is a non-native, wood-boring beetle that has caused widespread mortality of ash (Fraxinus Linnaeus (Oleaceae)) in eastern North America. During 2004–2007, we determined whether forest community composition and structure of black (F. nigra Marshall), green (F. pennsylvanica Marshall), and white (F. americana Linnaeus) ash stands influenced their susceptibility to EAB invasion in southeast Michigan, United States of America. There was no relationship between EAB-induced ash decline or percentage mortality and any measure of community composition (tree species diversity, stand/ash density, total basal area, or relative dominance of ash). There was also no relationship between measures of EAB impact (density of EAB signs, ash decline rating, percentage ash mortality, or percentage infested ash) and forest attributes (ash/total stand density, basal area, ash importance, or stand diversity). Decline and mortality of black ash advanced more rapidly than that of white and green ash. Percentage mortality of ash increased from 51% to 93% during 2004–2007. Distance from the epicentre of the invasion was negatively correlated with ash mortality, but this relationship dissipated over time. Stand composition data suggests that ash will be replaced by Quercus Linnaeus (Fagaceae), Acer Linnaeus (Sapindaceae), and Tilia Linnaeus (Malvaceae); such vegetation changes will irreversibly alter the structure and function of these forests.
Exotic herbivorous insects have drastically and irreversibly altered forest structure and composition of North American forests. For example, emerald ash borer (Agrilus planipennis Fairmaire) from Asia has caused wide-scale mortality of ash trees (Fraxinus spp.) in eastern United States and Canada. We studied the effects of forest changes resulting from emerald ash borer invasion on epigaeic or ground beetles (Coleoptera: Carabidae) along a gradient of ash dieback and gap sizes in southeastern Michigan. Ground beetles were sampled in hydric, mesic, and xeric habitats in which black (Fraxinus nigra Marshall), green (Fraxinus pennsylvanica Marshall), and white (Fraxinus americana L.) ash were the most common species, respectively. During 2006-2007, we trapped 2,545 adult ground beetles comprising 52 species. There was a negative correlation between percent ash tree mortality in 2006 and catches of all beetles. Catches of Agonum melanarium Dejean (in 2006) and Pterostichus mutus (Say) (in 2006-2007) were negatively correlated with tree mortality and gap size, respectively. However, catches of Pterostichus corvinus Dejean were positively correlated with gap size in 2006. As ash mortality and average gap size increased from 2006 to 2007, catches of all beetles as well as P. mutus and Pterostichus stygicus (Say) increased (1.3-3.9 times), while species diversity decreased, especially in mesic and xeric stands. Cluster analysis revealed that beetle assemblages in hydric and mesic stand diverged (25 and 40%, respectively) in their composition from 2006 to 2007, and that hydric stands had the most unique beetle assemblages. Overall, epigaeic beetle assemblages were altered in ash stands impacted by emerald ash borer; however, these impacts may dissipate as canopy gaps close.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.