The mitochondrial apoptosis pathway mediates cell death through the release of various pro-apoptotic factors including cytochrome c and Smac, the second mitochondrial activator of caspases, into the cytosol. Smac was shown previously to inhibit IAP proteins and to facilitate initiation of the caspase cascade upon cytochrome c release. To investigate Smac function during apoptosis and to explore Smac as an experimental cancer therapeutic, we constructed an expression system based on a single adenoviral vector containing Smac under control of the Tet-off system supplied in cis. Conditional expression of Smac induced apoptosis in human HCT116 and DU145 carcinoma cells regardless of the loss of Bax or overexpression of Bcl-x(L). Nevertheless, apoptosis induced by Smac was associated with cytochrome c release and breakdown of the mitochondrial membrane potential. This indicates that Smac acts independently of Bax and Bcl-x(L) during initiation of apoptosis and triggers a positive feedback loop that results in Bax/Bcl-x(L)-independent activation of mitochondria. In caspase-proficient cells, Smac-induced apoptosis could be inhibited partially by cell-permeable LEHD (caspase-9 inhibitor) and DEVD (caspase-3 inhibitor) peptides. Furthermore, loss of caspase-3 expression in MCF-7 cells carrying a caspase-3 null mutation completely abrogated the sensitivity for Smac-induced apoptotic or nonapoptotic, necrosis-like cell death, while re-expression of caspase-3 conferred sensitivity. Altogether, caspase-3 but not caspase-9 activation was necessary for execution of Smac-induced cell death. Notably, Smac did not induce caspase-9 processing in the absence of caspase-3. Thus, caspase-9 processing occurs secondary to caspase-3 activation during Smac-induced apoptosis. Altogether, Smac is capable of circumventing defects in mitochondrial apoptosis signaling such as loss of Bax or overexpression of Bcl-x(L) that are frequently observed in tumor cells resistant to anticancer therapy. Consequently, Smac appears to be a promising therapeutic target in anticancer treatment.
We recently reported the unprecedented occurrence of a hemoglobin gene (glob1) in the fruitfly Drosophila melanogaster. Here we investigate the structure and evolution of the glob1 gene in other Drosophila species. We cloned and sequenced glob1 genes and cDNA from D. pseudoobscura and D. virilis, and identified the glob1 gene sequences of D. simulans, D. yakuba, D. erecta, D. ananassae, D. mojavensis and D. grimshawi in the databases. Gene structure (introns in helix positions D7.0 and G7.0), gene synteny and sequence of glob1 are highly conserved, with high ds/dn ratios indicating strong purifying selection. The data suggest an important role of the glob1 protein in Drosophila, which may be the control of oxygen flow from the tracheal system. Furthermore, we identified two additional globin genes (glob2 and glob3) in the Drosophilidae. Although the sequences are highly derived, the amino acids required for heme‐ and oxygen‐binding are conserved. In contrast to other known insect globin, the glob2 and glob3 genes harbour both globin‐typical introns at positions B12.2 and G7.0. Both genes are conserved in various drosophilid species, but only expression of glob2 could be demonstrated by western blotting and RT‐PCR. Phylogenetic analyses show that the clade leading to glob2 and glob3, which are sistergroups, diverged first in the evolution of dipteran globins. glob1 is closely related to the intracellular hemoglobin of the botfly Gasterophilus intestinalis, and the extracellular hemoglobins from the chironomid midges derive from this clade.
The adenine deoxynucleosides cladribine (2CdA) and fludarabine (FAraA) are DNA-damaging agents that interfere with DNA repair and induce apoptosis in nonproliferating lymphoid cells. Although both drugs are clinically used for the treatment of indolent lymphoproliferative diseases, the pathways of apoptosis induction remain largely unknown. In the present work, we demonstrate that both drugs induce apoptosis independently of death receptor signaling but activate the mitochondrial cell death pathway. To dissect the signaling pathways, we employed Jurkat cells either deficient for FADD or caspase-8 or overexpressing Bcl-2. In Bcl-2 overexpressing cells, apoptosis and cytochrome c release were blocked whereas processing of caspase-9, -3 and -8 was partially inhibited. In contrast, neither the deficiency of FADD or caspase-8 nor the interference with death receptor signaling by neutralizing anti-CD95/Fas antibodies affected cell death. Inhibitor experiments revealed that caspase-8 is processed by caspase-3-like caspases. Moreover, cytochrome c release and processing of caspase-9 and -3 occurred to an equal extent in wild-type FADD -/-and caspase-8 -/-Jurkat cells. Likewise, apoptosis induction by cladribine or fludarabine was not hampered upon inhibition of caspase-8 in MOLT-3 and MOLT-4 cells or overexpression of a dominantnegative FADD mutant in BJAB cells. Thus, we conclude that apoptosis induced by nucleoside analogues is independent from death receptor signaling as well as from a proposed direct effect on APAF-1, but rather follows the mitochondrial signaling pathway of cytochrome c release and subsequent processing of caspase-9 and -3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.