Currently about 30% to 50% of all dairy cows are affected by a metabolic or infectious disease during the transition period. A key factor for preventive actions is the ability to precisely predict metabolic diseases at an early stage. We report the longitudinal metabolic profile of non-esterified fatty acids, beta-hydroxybutyrate (BHB), total bilirubin, and aspartate aminotransferase in hyperketonemic dairy cows. Aiming for a novel measurement regime to improve metabolic health in dairy cows, we evaluated prognostic classifiers for hyperketonemia. In the observational longitudinal study, 99 healthy adult primiparous and multiparous Simmental dairy cows were included. Every cow was monitored weekly for 14 consecutive weeks, beginning two weeks prior to the expected day of parturition until peak lactation. Cows with serum concentrations of BHB > 0.8 mmol/L were considered hyperketonemic. Biomarker profiles were fitted by the maximum likelihood method using a mixed effects natural cubic spline model. In the hyperketonemic group, the BHB profile remained significantly higher than that of the control group until the end of the study period. As a prognostic classifier, the cut-off level of 0.54 mmol/L BHB measured on the 10th day post partum had the highest area under the curve. These results provide new longitudinal insights into the metabolic biomarker progression of dairy cows and enable an early onset diagnosis of hyperketonemia.
Currently, subclinical metabolic imbalances at the individual cow and herd level are detected by measuring biomarkers in single blood samples. However, diurnal variations have not been fully described yet but need to be considered when sampling for a robust ad consistent analysis. The study describes the influence of lactation phases on circadian rhythms and diurnal variations for non-esterified fatty acids (NEFA), beta-hydroxybutyrate (BHB), total bilirubin (tBIL) and aspartate aminotransferase (AST) in dairy cows. In an observational pilot study, we used 16 clinically healthy Simmental dairy cows subdivided in four different lactation stages (dry-off, fresh, high and late lactating). Every cow was monitored for 24 h, with blood sampling and assessment of clinical parameters every 2 h. Time and lactation stage influence the concentration of the biomarkers NEFA, BHB and tBIL in serum. Further, circadian rhythmicity was found in high lactating cows for NEFA peaking at 5:39 am and BHB peaking at 4:20 pm. We suggest blood sampling for single-point measurements within three hours after the first feeding until two hours after the last feeding of the day. The results provide a new insight into the physiology of circadian rhythms in dairy cows and enable improved metabolic monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.