The nano-particles achieved the focus of the researchers in the field of refrigeration, due to its capability to change the properties of refrigerants upto a large extent. Nanofluids based on refrigerant is known as nano refrigerants and provided an improvement in thermophysical properties of various refrigerants in different terms. Different theoretical and experimental models are provided by the researchers have been used for the evaluation of different properties of refrigerant in terms of thermal conductivity, density, specific heat and viscosity of the refrigerants. In this effort, a number of models, and correlations have been used to result in the improvement in these properties of nano refrigerants. This is achieved by the addition of nanoparticles with varying volume concentration of 1% to 5 %. The analyses have been made within a temperature range of 190K- 269K at a constant pressure of 0.3 MPa. The study is elaborated to compare the various refrigerants which are R11, R12, R22, R134a and R141b with the addition of different nano-particles which are TiO2, Al2O3, ZnO and CuO at evaporator conditions. The addition of ZnO has given a good impact on the thermal conductivity of refrigerants. Effective viscosity of nano refrigerants depends upon the viscosity of refrigerants and volumetric concentration of nano-sized particles. Specific Heat shows the negative variation with the addition of nanoparticles but increased with the rise in temperature. The density of nano refrigerants depends upon the density of base refrigerant, Density of nanoparticles, volumetric concentration of nanoparticles. In future, the study can be elaborated in terms of compressor work, power consumption and overall performance of refrigeration system.
Metal matrix composites have exhibited better mechanical properties in comparison withconventional metals over an extensive range of working conditions. This makes them an appealing alternative in substituting metals for different applications. This paper gives a survey report, on machining of Aluminium metal Matrix composites (AMMC), particularly the molecule strengthened Aluminium metal matrix composites. It is an endeavour to give brief record of latest work to anticipate cutting parameters and surface structures in AMMC. The machinability can be enhanced by the utilization of Minimum Quantity Lubrication (MQL) during the machining of AMMC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.