The intimate relationship between humans and Neisseria gonorrhoeae infections span centuries, which is evidenced in case reports from studies dating back to the late 1700s and historical references that predate medical literature. N. gonorrhoeae is an exclusive human pathogen that infects the genital tract of both men and women as well as other mucosal surfaces including the oropharynx and rectum. In symptomatic infections, N. gonorrhoeae induces a robust inflammatory response at the site of infection. However, infections can also present asymptomatically complicating efforts to reduce transmission. N. gonorrhoeae infections have been effectively treated with antibiotics since their use was introduced in humans. Despite the existence of effective antibiotic treatments, N. gonorrhoeae remains one of the most common sexually transmitted pathogens and antibiotic resistant strains have arisen that limit treatment options. Development of a vaccine to prevent infection is considered a critical element of controlling this pathogen. The efforts to generate an effective gonococcal vaccine is limited by our poor understanding of the natural immunologic responses to infection. It is largely accepted that natural protective immunity to N. gonorrhoeae infections in humans does not occur or is very rare. Previous studies of the natural history of infection as well as some of the humoral and cellular immune responses to infection offer a window into the issues surrounding N. gonorrhoeae vaccine development. In this review, we summarize the current body of knowledge pertaining to human immune responses to gonococcal infections and the role of these responses in mediating protection from N. gonorrhoeae .
It has been shown that caspase-1, but not its upstream activator, ASC, contributes to oviduct pathology during mouse genital Chlamydia muridarum infection. We hypothesized that this dichotomy is due to the inadvertent absence of caspase-11 in previously used caspase-1-deficient mice. To address this, we studied the independent contributions of caspase-1 and -11 during genital Chlamydia infection. Our results show that caspase-11 deficiency was sufficient to recapitulate the effect of the combined absence of both caspase-1 and caspase-11 on oviduct pathology. Further, mice that were deficient for both caspase-1 and -11 but that expressed caspase-11 as a transgene (essentially, caspase-1-deficient mice) had no significant difference in oviduct pathology from control mice. Caspase-11-deficient mice showed reduced dilation in both the oviducts and uterus. To determine the mechanism by which caspase-11-deficient mice developed reduced pathology, the chlamydial burden and immune cell infiltration were determined in the oviducts. In the caspase-11-deficient mice, we observed increased chlamydial burdens in the upper genital tract, which correlated with increased CD4 T cell recruitment, suggesting a contribution of caspase-11 in infection control. Additionally, there were significantly fewer neutrophils in the oviducts of caspase-11-deficient mice, supporting the observed decrease in the incidence of oviduct pathology. Therefore, caspase-11 activation contributes to pathogen control and oviduct disease independently of caspase-1 activation.
Neisseria gonorrhoeae infection of the female lower genital tract can present with a spectrum of phenotypes ranging from asymptomatic carriage to symptomatic cervical inflammation, or cervicitis. The factors that contribute to the development of asymptomatic or symptomatic infections are largely uncharacterized. We conducted a pilot study to assess differences in the cervicovaginal microbial community of patients presenting with symptomatic vs. asymptomatic N. gonorrhoeae infections to a sexually transmitted infections (STI) clinic. DNA was isolated from cervicovaginal swab specimens from women who tested positive for N. gonorrhoeae infection using a clinical diagnostic nucleic acid amplification test. We performed deep sequencing of 16S ribosomal RNA gene amplicons, followed by microbiome analyses with QIIME, and species-specific real-time PCR to assess the composition of microbial communities cohabitating the lower genital tract with the infecting N. gonorrhoeae. Specimens collected from asymptomatic individuals with N. gonorrhoeae infection and no co-infection with Chlamydia trachomatis and/or Trichomonas vaginalis carried Lactobacillus-dominant microbial communities more frequently than symptomatic patients without co-infection. When compared to asymptomatic individuals, symptomatic women had microbial communities characterized by more diverse and heterogenous bacterial taxa, typically associated with bacterial vaginosis (BV) [Prevotella, Sneathia, Mycoplasma hominis, and Bacterial Vaginosis-Associated Bacterium-1 (BVAB1)/“Candidatus Lachnocurva vaginae”]. Both symptomatic and asymptomatic N. gonorrhoeae patients with additional STI co-infection displayed a BV-like microbial community. These findings suggest that Lactobacillus-dominant vaginal microbial community may protect individuals from developing symptoms during lower genital tract infection with N. gonorrhoeae.
Neisseria gonorrhoeae infection of the female lower genital tract can present with a spectrum of phenotypes ranging from asymptomatic carriage to symptomatic cervical inflammation, or cervicitis. The factors that contribute to the development of asymptomatic or symptomatic infections are largely uncharacterized. We conducted a pilot study to assess differences in the cervicovaginal microbial community of patients presenting with symptomatic vs. asymptomatic N. gonorrhoeae infections to a sexually transmitted infections (STI) clinic. DNA was isolated from cervicovaginal swab specimens from women who tested positive for N. gonorrhoeae infection using a clinical diagnostic nucleic acid amplification test. We performed deep sequencing of 16S ribosomal RNA gene amplicons, followed by microbiome analyses with QIIME, and species-specific real-time PCR to assess the composition of microbial communities cohabitating the lower genital tract with the infecting N. gonorrhoeae. Specimens collected from asymptomatic individuals with N. gonorrhoeae infection and no co-infection with Chlamydia trachomatis and/or Trichomonas vaginalis carried Lactobacillus-dominant microbial communities more frequently than symptomatic patients without co-infection. When compared to asymptomatic individuals, symptomatic women had microbial communities characterized by more diverse and heterogenous bacterial taxa, typically associated with bacterial vaginosis (BV) (Prevotella, Sneathia, Mycoplasma hominis and Bacterial Vaginosis-Associated Bacterium-1 (BVAB1)/Candidatus Lachnocurva vaginae). Both symptomatic and asymptomatic N. gonorrhoeae patients with additional STI co-infection displayed a BV-like microbial community. We used a murine model of N. gonorrhoeae infection in mice pre-colonized with Lactobacillus crispatus to test whether pre-existing L. crispatus was protective from N. gonorrhoeae colonization or whether N. gonorrhoeae infection could drive the loss of L. crispatus during infection. Vaginal infection with either N. gonorrhoeae strain 1291 or an isogenic mutant known to exhibit lower inflammatory had no impact on Lactobacillus burden recovered from the mice. These data taken together suggest that Lactobacillus-dominant vaginal microbial community may protect individuals from developing symptoms during lower genital tract infection with N. gonorrhoeae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.