Total knee arthroplasty (TKA) is a widely accepted surgical procedure for the treatment of patients with end-stage osteoarthritis (OA). However, the function of the knee is not always fully recovered after TKA. We used a dual fluoroscopic imaging system to evaluate the in vivo kinematics of the knee with medial compartment OA before and after a posterior cruciate ligament-retaining TKA (PCR-TKA) during weight-bearing knee flexion, and compared the results to those of normal knees. The OA knees displayed similar internal/external tibial rotation to normal knees. However, the OA knees had less overall posterior femoral translation relative to the tibia between 0 • and 105 • flexion and more varus knee rotation between 0 • and 45 • flexion, than in the normal knees. Additionally, in the OA knees the femur was located more medially than in the normal knees, particularly between 30 • and 60 • flexion. After PCR-TKA, the knee kinematics were not restored to normal. The overall internal tibial rotation and posterior femoral translation between 0 • and 105 • knee flexion were dramatically reduced. Additionally, PCR-TKA introduced an abnormal anterior femoral translation during early knee flexion, and the femur was located lateral to the tibia throughout weight-bearing flexion. The data help understand the biomechanical functions of the knee with medial compartment OA before and after contemporary PCR-TKA. They may also be useful for improvement of future prostheses designs and surgical techniques in treatment of knees with end-stage OA.
The objective of this study was to investigate biomechanics of TKA patients during high flexion. Six patients (seven knees) with a posterior-substituting TKA and weight-bearing flexion >130 degrees were included in the study. The six degree-of-freedom kinematics, tibiofemoral contact, and cam-post contact were measured during a deep knee bend using dual-plane fluoroscopy. The patients achieved average weight-bearing flexion of 139.5 +/- 4.5 degrees. Posterior femoral translation and internal tibial rotation increased steadily beyond 90 degrees flexion, and a sharp increase in varus rotation was noted at maximum flexion. Initial cam-post engagement was observed at 100.3 +/- 6.7 degrees flexion. Five knees had cam-post disengagement before maximum flexion. Lateral femoral condylar lift-off was found in five out of seven knees at maximum flexion, and medial condylar lift-off was found in one knee. Future studies should investigate if the kinematic characteristics of posterior-substituting TKA knees noted in this study are causative factors of high knee flexion.
Even though posterior substituting total knee arthroplasty has been widely used in surgery, how the cam-post mechanism (posterior substituting mechanism) affects knee joint kinematics and function in patients is not known. The objective of the present study was to investigate posterior femoral translation, internal tibial rotation, tibiofemoral contact, and cam-post engagement of total knee arthroplasty patients during in vivo weight-bearing flexion. Twenty-four knees with a PS TKA were investigated while performing a single leg weight-bearing lunge from full extension to maximum flexion as images were recorded using a dual fluoroscopic system. The in vivo knee position at each targeted flexion angle was reproduced using 3D TKA models and the fluoroscopic images. The kinematics of the knee was measured from the series of the total knee arthroplasty models. The cam-post engagement was determined when the surface model of the femoral cam overlapped with that of the tibial post. The mean maximum flexion angle for all the subjects was 112.5 +/- 13.1 degrees . The mean flexion angle where cam-post engagement was observed was 91.1 +/- 10.9 degrees . The femur moved anteriorly from 0 degrees to 30 degrees and posteriorly through the rest of the flexion range. The internal tibial rotation increased approximately 6 degrees from full extension to 90 degrees of flexion and decreased slightly with further flexion. Both the medial and lateral contact point moved posteriorly from 0 degrees to 30 degrees , remained relatively constant from 30 degrees to 90 degrees , and then moved further posterior from 90 degrees to maximum flexion. The in vivo cam-post engagement corresponded to increased posterior translation and reduced internal tibial rotation at high flexion of the posterior substituting total knee arthroplasty. The initial cam-post engagement was also mildly correlated with the maximum flexion angle of the knee (R = 0.51, p = 0.019). A later cam-post engagement might indicate an environment conducive to greater flexion. If the factors that affect cam-post engagement timing can be established, proper manipulation of those factors may improve the function of the knee after posterior substituting total knee arthroplasty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.