The deformation control of roadways surrounded by rock in the fully mechanized amplification sections of extra-thick coal seams is problematic. To analyze the failure and failure characteristics of a support frame, as well as the deformation and failure processes of the surrounding rock, through theoretical analysis and industrial tests, the deformation and support conditions of a return airway of a fully mechanized caving face in an extra-thick coal seam in the Yangchangwan Coal Mine, in the Ningdong mining, area were examined. Combined with limit equilibrium theory and roadway section size, the width of the coal pillar of the return air roadway at the 130,205 working face was calculated to be 6 m. The layout scheme and implementation parameters of roof blasting pressure relief, coal pillar grouting modification, and bolt (cable) support were designed. Based on the analysis, a “Coal pillar optimization–roof cutting destressing–routing modification–rock bolting” system for surrounding rock control in synergy with the fully enlarged section mining roadway in the extra-thick coal seam was proposed, and the deformation of the surrounding rock was monitored, along with the stress of the support body and the grouting effect on the site. Field experiments show that after the implementation of the surrounding rock control in synergy with the roadway, the maximum subsidence of the top plate was 55 mm, the maximum bottom heave of the bottom plate was 55 mm, the maximum values of the upper and lower side drums were 30 mm and 70 mm, respectively, and the breaking rate of the bolt (cable) and the deformation of the surrounding rock of the roadway was reduced by more than 90% and 70%, respectively. The effective performance of the coal pillar grouting was observed as well. Field practice of the roadway surrounding rock control in the synergy method indicated that rock deformation was effectively controlled, and the successful application of this technology was able to provide reliable technical and theoretical support for the Ningdong mining area and mines with similar conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.