We present a novel approach for unsupervised learning of depth and ego-motion from monocular video. Unsupervised learning removes the need for separate supervisory signals (depth or ego-motion ground truth, or multi-view video). Prior work in unsupervised depth learning uses pixel-wise or gradient-based losses, which only consider pixels in small local neighborhoods. Our main contribution is to explicitly consider the inferred 3D geometry of the whole scene, and enforce consistency of the estimated 3D point clouds and ego-motion across consecutive frames. This is a challenging task and is solved by a novel (approximate) backpropagation algorithm for aligning 3D structures.We combine this novel 3D-based loss with 2D losses based on photometric quality of frame reconstructions using estimated depth and ego-motion from adjacent frames. We also incorporate validity masks to avoid penalizing areas in which no useful information exists.We test our algorithm on the KITTI dataset and on a video dataset captured on an uncalibrated mobile phone camera. Our proposed approach consistently improves depth estimates on both datasets, and outperforms the stateof-the-art for both depth and ego-motion. Because we only require a simple video, learning depth and ego-motion on large and varied datasets becomes possible. We demonstrate this by training on the low quality uncalibrated video dataset and evaluating on KITTI, ranking among top performing prior methods which are trained on KITTI itself. 1
Abstract-We present an accurate, real-time approach to robotic grasp detection based on convolutional neural networks. Our network performs single-stage regression to graspable bounding boxes without using standard sliding window or region proposal techniques. The model outperforms state-ofthe-art approaches by 14 percentage points and runs at 13 frames per second on a GPU. Our network can simultaneously perform classification so that in a single step it recognizes the object and finds a good grasp rectangle. A modification to this model predicts multiple grasps per object by using a locally constrained prediction mechanism. The locally constrained model performs significantly better, especially on objects that can be grasped in a variety of ways.
Learning to predict scene depth from RGB inputs is a challenging task both for indoor and outdoor robot navigation. In this work we address unsupervised learning of scene depth and robot ego-motion where supervision is provided by monocular videos, as cameras are the cheapest, least restrictive and most ubiquitous sensor for robotics. Previous work in unsupervised image-to-depth learning has established strong baselines in the domain. We propose a novel approach which produces higher quality results, is able to model moving objects and is shown to transfer across data domains, e.g. from outdoors to indoor scenes. The main idea is to introduce geometric structure in the learning process, by modeling the scene and the individual objects; camera ego-motion and object motions are learned from monocular videos as input. Furthermore an online refinement method is introduced to adapt learning on the fly to unknown domains. The proposed approach outperforms all state-of-the-art approaches, including those that handle motion e.g. through learned flow. Our results are comparable in quality to the ones which used stereo as supervision and significantly improve depth prediction on scenes and datasets which contain a lot of object motion. The approach is of practical relevance, as it allows transfer across environments, by transferring models trained on data collected for robot navigation in urban scenes to indoor navigation settings. The code associated with this paper can be found at https://sites.google.com/ view/struct2depth.
We present a novel method for simultaneous learning of depth, egomotion, object motion, and camera intrinsics from monocular videos, using only consistency across neighboring video frames as supervision signal. Similarly to prior work, our method learns by applying differentiable warping to frames and comparing the result to adjacent ones, but it provides several improvements: We address occlusions geometrically and differentiably, directly using the depth maps as predicted during training. We introduce randomized layer normalization, a novel powerful regularizer, and we account for object motion relative to the scene. To the best of our knowledge, our work is the first to learn the camera intrinsic parameters, including lens distortion, from video in an unsupervised manner, thereby allowing us to extract accurate depth and motion from arbitrary videos of unknown origin at scale. We evaluate our results on the Cityscapes, KITTI and Eu-RoC datasets, establishing new state of the art on depth prediction and odometry, and demonstrate qualitatively that depth prediction can be learned from a collection of YouTube videos.
We propose a detection and segmentation algorithm for the purposes of fine-grained recognition. The algorithm first detects low-level regions that could potentially belong to the object and then performs a full-object segmentation through propagation. Apart from segmenting the object, we can also 'zoom in' on the object, i.e. center it, normalize it for scale, and thus discount the effects of the background. We then show that combining this with a state-of-the-art classification algorithm leads to significant improvements in performance especially for datasets which are considered particularly hard for recognition, e.g. birds species.The proposed algorithm is much more efficient than other known methods in similar scenarios [4,21]. Our method is also simpler and we apply it here to different classes of objects, e.g. birds, flowers, cats and dogs.We tested the algorithm on a number of benchmark datasets for fine-grained categorization. It outperforms all the known state-of-the-art methods on these datasets, sometimes by as much as 11%. It improves the performance of our baseline algorithm by 3-4%, consistently on all datasets. We also observed more than a 4% improvement in the recognition performance on a challenging largescale flower dataset, containing 578 species of flowers and 250,000 images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.