An automated platform has been developed for acquisition and visualization of mass spectrometry imaging (MSI) data using nanospray desorption electrospray ionization (nano-DESI). The new system enables robust operation of the nano-DESI imaging source over many hours by precisely controlling the distance between the sample and the nano-DESI probe. This is achieved by mounting the sample holder onto an automated XYZ stage, defining the tilt of the sample plane, and recalculating the vertical position of the stage at each point. This approach is useful for imaging of relatively flat samples such as thin tissue sections. Custom software called MSI QuickView was developed for visualization of large data sets generated in imaging experiments. MSI QuickView enables fast visualization of the imaging data during data acquisition and detailed processing after the entire image is acquired. The performance of the system is demonstrated by imaging rat brain tissue sections. Low background noise enables simultaneous detection of lipids and metabolites in the tissue section. High-resolution mass analysis combined with tandem mass spectometry (MS/MS) experiments enabled identification of the observed species. In addition, the high dynamic range (>2000) of the technique allowed us to generate ion images of low-abundance isobaric lipids. A high-spatial resolution image was acquired over a small region of the tissue section revealing the distribution of an abundant brain metabolite, creatine, on the boundary between the white and gray matter. The observed distribution is consistent with the literature data obtained using magnetic resonance spectroscopy.
Ultrahigh resolution mass spectrometry, such as Fourier transform ion cyclotron resonance mass spectrometry (FT ICR MS), can resolve thousands of molecular ions in complex organic matrices. A Compound Identification Algorithm (CIA) was previously developed for automated elemental formula assignment for natural organic matter (NOM). In this work, we describe software Formularity with a user-friendly interface for CIA function and newly developed search function Isotopic Pattern Algorithm (IPA). While CIA assigns elemental formulas for compounds containing C, H, O, N, S, and P, IPA is capable of assigning formulas for compounds containing other elements. We used halogenated organic compounds (HOC), a chemical class that is ubiquitous in nature as well as anthropogenic systems, as an example to demonstrate the capability of Formularity with IPA. A HOC standard mix was used to evaluate the identification confidence of IPA. Tap water and HOC spike in Suwannee River NOM were used to assess HOC identification in complex environmental samples. Strategies for reconciliation of CIA and IPA assignments were discussed. Software and sample databases with documentation are freely available.
Single-cell proteomics can provide critical biological insight into the cellular heterogeneity that is masked by bulk-scale analysis. We have developed a nanoPOTS (nanodroplet processing in one pot for trace samples) platform and demonstrated its broad applicability for single-cell proteomics. However, because of nanoliter-scale sample volumes, the nanoPOTS platform is not compatible with automated LC-MS systems, which significantly limits sample throughput and robustness. To address this challenge, we have developed a nanoPOTS autosampler allowing fully automated sample injection from nanowells to LC-MS systems. We also developed a sample drying, extraction, and loading workflow to enable reproducible and reliable sample injection. The sequential analysis of 20 samples containing 10 ng tryptic peptides demonstrated high reproducibility with correlation coefficients of >0.995 between any two samples. The nanoPOTS autosampler can provide analysis throughput of 9.6, 16, and 24 single cells per day using 120, 60, and 30 min LC gradients, respectively. As a demonstration for single-cell proteomics, the autosampler was first applied to profiling protein expression in single MCF10A cells using a label-free approach. At a throughput of 24 single cells per day, an average of 256 proteins was identified from each cell and the number was increased to 731 when the Match Between Runs algorithm of MaxQuant was used. Using a multiplexed isobaric labeling approach (TMT-11plex), ∼77 single cells could be analyzed per day. We analyzed 152 cells from three acute myeloid leukemia cell lines, resulting in a total of 2558 identified proteins with 1465 proteins quantifiable (70% valid values) across the 152 cells. These data showed quantitative single-cell proteomics can cluster cells to distinct groups and reveal functionally distinct differences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.