The tensile strength is an important parameter in the design and analysis of cemented paste backfill (CPB) for underground mining. Although traditional axisymmetric dogbone-shaped specimens have been used to directly determine the tensile strength of rocks and concretes, such methods are not practical for CPB because of its much lower strength and associated difficulties in shaping the specimens. To determine the tensile strength of CPB, a castable rectangular dogbone specimen is developed, the apparatus including a compression to tension load converter, and a four-part split mold. The designed apparatus is validated using numerical analysis and shown through testing applications to be relatively simple, practical, and reliable. Results illustrate that the primary design allows the direct determination of tensile strength and characterization of the stress-strain behavior of isotropic materials. The stress-strain behavior could be reliably correlated with unconfined compression strength test results. The data show how the tensile strength is dependent on curing time and cement content. These results can lead to better mine backfill designs that fundamentally improve the underground mine stability.
Cemented paste backfill (CPB) has been increasingly utilized in mines for efficient mineral obtaining and regional ground support. To guarantee the work performance, the mechanical properties of CPB have long been a topic of study among researchers. But the research progress on the tensile strength of CPB is limited, mainly because of the lack of an appropriate test method due to the low tensile strength of CPB. Therefore, instead of the conventional splitting indirect tensile strength test method, a new direct tension test method, which utilizes the specifically designed compression to tension load converter (CTLC) and dog-bone-shaped specimen, has been applied to study the direct tensile properties of CPB. In this study, the direct tensile strength (DTS) of 47 CPB mix designs were measured using CTLC, and the unconfined compressive strength (UCS) of the corresponding mix design was also tested. The experimental results showed that the increase in the binder content, solid mass content, and curing period led to higher CPB direct tensile strength, and the DTS of CPB was most sensitive to the binder content. Furthermore, the influence of the slurry mass solid content on the tensile strength of CPB was not linear. The influence of the binder content became increasingly notable with the increase in the solid content, especially if the binder content exceeded 75%. The effect of the curing period was found to be rather marginal due to the decreasing amount of un-hydrated cementitious materials left with the increase of the curing period. Overall, the DTS generated using dog-bone specimens and the CTLC apparatus are valid for better mine backfill designs. Finally, a linear correlative between UCS and DTS with a formula in the form of σDT (DTS) = 0.171 σc (UCS) was obtained, and the correlation was sufficient for further calculation of DTS using measured UCS.
A copper-nickel slag-based alkali-activated cementing material (CNSCM) for backfilling was prepared using copper-nickel slag as a raw material and sodium silicate (SS) as an activating agent. The effects of SS content (6%, 8%, and 10%) and curing humidity on the compressive strength of CNSCM were investigated using an electronic universal testing machine. Types of hydration products and microstructures were analyzed by X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The results indicated that by increasing the SS content, the compressive strength of the CNSCM exhibited an increasing trend, followed by a decreasing trend. The optimal content was 8%. Humidity was identified as another factor affecting compressive strength, which reached 17 MPa after curing for 28 d under standard conditions. A decrease in humidity could improve the compressive strength of the material. The main hydration reaction products of the CNSCM were C-S-H gel, Fe (OH)2 or Fe (OH)3 gel, and CaCO3.
A longstanding mine backfill design challenge is determining the strength required if the (partially) cured backfill is subsequently undercut. Mitchell (1991) called the undercut backfill a sill mat and proposed an analytical solution that is still often used, at least for preliminary design, and has motivated subsequent empirical design methods. However, fully employing the Mitchell sill mat solution requires knowledge of the backfill material’s Unconfined Compressive Strength (UCS), tangent Young’s modulus (Et), tensile strength (σt), as well as estimates of stope wall closure. Conducting a high-quality UCS test poses challenges but relating the test result to the remaining material parameters is more difficult. Some new material testing data is presented and compared to available published results. Using the parameter mi=UCS/σt the range of available testing data is found to be mi= 3 to 22, however, the most compelling data is obtained when the Mohr’s failure circle in tension is tangential to the corresponding Mohr–Coulomb failure envelope determined from other strength tests. In these cases, the value mi= 4 is found for the materials tested, which is much lower than the value mi= 10 commonly assumed and implies a limiting UCS 60% lower compared to the conventional assumption. It is also found that the relationship between Et and UCS is described by a power function that is close to linear, but the values for the constant and exponent in the power function depend on the material tested. However, for given tailings the power function is found to be independent of void ratio, binder type or concentration, curing time, and water salinity, within the ranges these parameters were investigated. Therefore, when Et is used in the Mitchell sill mat solution it should be correlated with the UCS using the appropriate power function. These correlations are then used with the Mitchell sill mat solution and published measurements of backfill closure strains to estimate the Mitchell solution’s range of applicability based on its underlying assumptions, and a similar analysis is extended to an “empirical design method” motivated by the Mitchell sill mat solution. It is demonstrated that these existing approaches have limited applicability, and more generally a full analysis in support of rational design will require numerical modeling that incorporates the effect of confining stress on the material’s stiffness and mobilized strength.
Cemented paste backfill (CPB) plays an important role in the mining industry due to safety, cost efficiency, and environmental benefits. Studies on CPB have improved the design and application of paste backfill in underground mines. Direct shear is one of the most fundamental parameters for assessing backfill strength. This study harnesses direct shear tests to explore the low confining stress behavior of CPB. We perform all the tests in a standard apparatus on the combination of three binder contents of 4.2%, 6.9%, and 9.7% CPB with four curing times of 3, 7, 14, and 28 days, respectively. The applied confining stress levels vary in a range according to the in situ regime. Results are presented by strength envelope, stress-strain property, and shear strength with curing time and binder content. The data suggest that the shear strength follows the Mohr–Coulomb envelope in which the shear strength and behavior are time and binder content dependent. In addition, the results show that shear strength is strongly related to the binder content than the curing time, namely, the higher the degree of binder hydration, the higher the cementation binding force between CPBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.