RNA interference (RNAi) has become a popular tool for downregulating specific gene expression in many species, including mammalian cells [Novina, C. D., and Sharp, P. A. (2004) The RNAi revolution, Nature 430, 161-164]. Synthetic double-stranded RNA sequences (siRNA) of 21-23 nucleotides have been shown in particular to have the potential to silence specifically gene function in cultured mammalian cells. As a result, there has been a significant surge of interest in the application of siRNA in functional genomics programs as a means of deciphering specific gene function. However, for siRNA functional genomics studies to be valuable and effective, specific silencing of any given target gene is essential, devoid of nonspecific knockdown and toxic side effects. For this reason, we became interested in investigating cationic liposome/lipid-mediated siRNA delivery (siFection) as a meaningful and potentially potent way to facilitate effective functional genomics studies. Accordingly, a number of cationic liposome/lipid-based systems were selected, and their formulation with siRNA was studied, with particular emphasis on formulation parameters most beneficial for siRNA use in functional genomics studies. Cationic liposome/lipid-based systems were selected from a number of commercially available products, including lipofectAMINE2000 and a range of CDAN/DOPE systems formulated from different molar ratios of the cationic cholesterol-based polyamine lipid N(1)-cholesteryloxycarbonyl-3,7-diazanonane-1,9-diamine (CDAN) and the neutral helper lipid dioleoyl-L-alpha-phosphatidylethanolamine (DOPE). Parameters that were been investigated included the lipid:nucleic acid ratio of mixing, the extent of cationic liposome/lipid-nucleic acid complex (lipoplex) formation plus medium used, the lipoplex particle size, the mode of delivery, and dose-response effects. Results suggest that concentrations during siRNA lipoplex (LsiR) formation are crucial for maximum knockdown, but the efficacy of gene silencing is not influenced by the size of LsiR particles. Most significantly, results show that most commercially available cationic liposome/lipid-based systems investigated here mediate a significant nonspecific downregulation of the total cellular protein content at optimal doses for maximal specific gene silencing and knockdown. Furthermore, one pivotal aspect of using siRNA for functional genomics studies is the need for at least minimal cellular toxicity. Results demonstrate that CDAN and DOPE with and without siRNA confer low toxicity to mammalian cells, whereas lipofectAMINE2000 is clearly toxic both as a reagent and after formulation into LsiR particles. Interestingly, LsiR particles formulated from CDAN and DOPE (45:55, m/m; siFECTamine) seem to exhibit a slower cellular uptake than LsiR particles formulated from lipofectAMINE2000. Intracellularly, LsiR particles formulated from CDAN and DOPE systems also appear to behave differently, amassing in distinct but diffuse small nonlysosomal compartments for at least 5 h after siFection. ...
This study provides novel insights into the peripheral mechanism of action of acetate, independent of central action, including 'browning' and enhancement of hepatic mitochondrial function.
A comparison of the LysU crystal structure with the structures of seryl- and aspartyl-tRNA synthetases enables a conserved core to be identified. The structural homology with the aspartyl-tRNA synthetase extends to include the anticodon-binding domain. When the active sites of lysyl-, aspartyl- and seryl-tRNA synthetases are compared, a number of catalytically important residues are conserved and a similar extended network of hydrogen bonds can be observed in the amino acid binding pocket in all three structures, although the details may differ. The lysine substrate is involved in an extended network of hydrogen bonds and polar interactions, with the side chain amino group forming a salt bridge with Glu428. The binding of ATP to LysU can be modelled on the basis of the aspartyl-tRNA synthetase-ATP complex, but the tRNA acceptor stem interaction for LysU cannot be easily modelled by similar extrapolation.
We have synthesized a linear, bifunctional peptide that comprises an integrin-targeting domain containing an arginine-glycine-aspartic acid tripeptide motif and a DNA-binding moiety consisting of a short stretch of 16 lysine residues. This peptide can form distinctive, condensed complexes with DNA and is capable of mediating its delivery and expression in a variety of mammalian cells in culture. Internalization is mediated by cell surface integrin receptors via a mechanism that is known to be phagocytic. We have analyzed the relationship between DNA and peptide and have investigated the conditions suitable for optimal gene delivery. The formation of condensed peptide DNA complexes leads to resistance to nuclease degradation. The level of reporter gene expression obtained is dependent on the peptide-to-DNA ratio and is enhanced in the presence of the endosomal buffer chloroquine, polyethyleneimine, and deactivated adenovirus during gene delivery. Under optimal conditions the levels of reporter gene expression obtained approach or even exceed those obtained with DNA delivered with the commercial liposome Lipofectamine. The ability to produce an efficient gene delivery system using small, easily modified, and well-defined constructs that have no constraint of particle size demonstrates the advantages of integrin-targeting peptides for gene transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.