New and rapid political and economic changes in Myanmar are increasing the pressures on the country’s forests. Yet, little is known about the past and current condition of these forests and how fast they are declining. We mapped forest cover in Myanmar through a consortium of international organizations and environmental non-governmental groups, using freely-available public domain data and open source software tools. We used Landsat satellite imagery to assess the condition and spatial distribution of Myanmar’s intact and degraded forests with special focus on changes in intact forest between 2002 and 2014. We found that forests cover 42,365,729 ha or 63% of Myanmar, making it one of the most forested countries in the region. However, severe logging, expanding plantations, and degradation pose increasing threats. Only 38% of the country’s forests can be considered intact with canopy cover >80%. Between 2002 and 2014, intact forests declined at a rate of 0.94% annually, totaling more than 2 million ha forest loss. Losses can be extremely high locally and we identified 9 townships as forest conversion hotspots. We also delineated 13 large (>100,000 ha) and contiguous intact forest landscapes, which are dispersed across Myanmar. The Northern Forest Complex supports four of these landscapes, totaling over 6.1 million ha of intact forest, followed by the Southern Forest Complex with three landscapes, comprising 1.5 million ha. These remaining contiguous forest landscape should have high priority for protection. Our project demonstrates how open source data and software can be used to develop and share critical information on forests when such data are not readily available elsewhere. We provide all data, code, and outputs freely via the internet at (for scripts: https://bitbucket.org/rsbiodiv/; for the data: http://geonode.themimu.info/layers/geonode%3Amyan_lvl2_smoothed_dec2015_resamp)
BackgroundChikungunya was, from the European perspective, considered to be a travel-related tropical mosquito-borne disease prior to the first European outbreak in Northern Italy in 2007. This was followed by cases of autochthonous transmission reported in South-eastern France in 2010. Both events occurred after the introduction, establishment and expansion of the Chikungunya-competent and highly invasive disease vector Aedes albopictus (Asian tiger mosquito) in Europe. In order to assess whether these outbreaks are indicative of the beginning of a trend or one-off events, there is a need to further examine the factors driving the potential transmission of Chikungunya in Europe. The climatic suitability, both now and in the future, is an essential starting point for such an analysis.MethodsThe climatic suitability for Chikungunya outbreaks was determined by using bioclimatic factors that influence, both vector and, pathogen. Climatic suitability for the European distribution of the vector Aedes albopictus was based upon previous correlative environmental niche models. Climatic risk classes were derived by combining climatic suitability for the vector with known temperature requirements for pathogen transmission, obtained from outbreak regions. In addition, the longest potential intra-annual season for Chikungunya transmission was estimated for regions with expected vector occurrences.In order to analyse spatio-temporal trends for risk exposure and season of transmission in Europe, climate change impacts are projected for three time-frames (2011–2040, 2041–2070 and 2071–2100) and two climate scenarios (A1B and B1) from the Intergovernmental Panel on Climate Change (IPCC). These climatic projections are based on regional climate model COSMO-CLM, which builds on the global model ECHAM5.ResultsEuropean areas with current and future climatic suitability of Chikungunya transmission are identified. An increase in risk is projected for Western Europe (e.g. France and Benelux-States) in the first half of the 21st century and from mid-century onwards for central parts of Europe (e.g. Germany). Interestingly, the southernmost parts of Europe do not generally provide suitable conditions in these projections. Nevertheless, many Mediterranean regions will persist to be climatically suitable for transmission. Overall, the highest risk of transmission by the end of the 21st century was projected for France, Northern Italy and the Pannonian Basin (East-Central Europe). This general tendency is depicted in both, the A1B and B1 climate change scenarios.ConclusionIn order to guide preparedness for further outbreaks, it is crucial to anticipate risk as to identify areas where specific public health measures, such as surveillance and vector control, can be implemented. However, public health practitioners need to be aware that climate is only one factor driving the transmission of vector-borne disease.
The emergence of mosquito-transmitted viruses poses a global threat to human health. Combining mechanistic epidemiological models based on temperature-trait relationships with climatological data is a powerful technique for environmental risk assessment. However, a limitation of this approach is that the local microclimates experienced by mosquitoes can differ substantially from macroclimate measurements, particularly in heterogeneous urban environments. To address this scaling mismatch, we modeled spatial variation in microclimate temperatures and the thermal potential for dengue transmission by Aedes albopictus across an urban-to-rural gradient in Athens-Clarke County GA. Microclimate data were collected across gradients of tree cover and impervious surface cover. We developed statistical models to predict daily minimum and maximum microclimate temperatures using coarse-resolution gridded macroclimate data (4000 m) and high-resolution land cover data (30 m). The resulting high-resolution microclimate maps were integrated with temperaturedependent mosquito abundance and vectorial capacity models to generate monthly predictions for the summer and early fall of 2018. The highest vectorial capacities were predicted for patches of trees in urban areas with high cover of impervious surfaces. Vectorial capacity was most sensitive to tree cover during the summer and became more sensitive to impervious surfaces in the early fall. Predictions from the same models using temperature data from a local meteorological station consistently over-predicted vectorial capacity compared to the microclimate-based estimates. This work demonstrates that it is feasible to model variation in mosquito microenvironments across an urban-to-rural gradient using satellite Earth observations. Epidemiological models applied to the microclimate maps revealed localized patterns of temperature suitability for disease transmission that would not be detectable using macroclimate data. Incorporating microclimate data into disease transmission models PLOS NEGLECTED TROPICAL DISEASES
Understanding the geographic distribution of mosquito-borne disease and mapping disease risk are important for prevention and control efforts. Mosquito-borne viruses (arboviruses), such as West Nile virus (WNV), are highly dependent on environmental conditions. Therefore, the use of environmental data can help in making spatial predictions of disease distribution. We used geocoded human case data for 2004-2017 and population-weighted control points in combination with multiple geospatial environmental data sets to assess the environmental drivers of WNV cases and to map relative infection risk in South Dakota, USA. We compared the effectiveness of (1) land cover and physiography data, (2) climate data, and (3) spectral data for mapping the risk of WNV in South Dakota. A final model combining all data sets was used to predict spatial patterns of disease transmission and characterize the associations between environmental factors and WNV risk. We used a boosted regression tree model to identify the most important variables driving WNV risk and generated risk maps by applying this model across the entire state. We found that combining multiple sources of environmental data resulted in the most accurate predictions. Elevation, late-season humidity, and early-season surface moisture were the most important predictors of disease distribution. Indices that quantified interannual variability of climatic conditions and land surface moisture were better predictors than interannual means. We suggest that combining measures of interannual environmental variability with static land cover and physiography variables can help to improve spatial predictions of arbovirus transmission risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.