Exercise promotes functional improvements in aged tissues, but the extent to which it simulates partial molecular reprogramming is unknown. Using transcriptome profiling from (1) a skeletal muscle‐specific in vivo Oct3/4, Klf4, Sox2 and Myc (OKSM) reprogramming‐factor expression murine model; (2) an in vivo inducible muscle‐specific Myc induction murine model; (3) a translatable high‐volume hypertrophic exercise training approach in aged mice; and (4) human exercise muscle biopsies, we collectively defined exercise‐induced genes that are common to partial reprogramming. Late‐life exercise training lowered murine DNA methylation age according to several contemporary muscle‐specific clocks. A comparison of the murine soleus transcriptome after late‐life exercise training to the soleus transcriptome after OKSM induction revealed an overlapping signature that included higher JunB and Sun1. Also, within this signature, downregulation of specific mitochondrial and muscle‐enriched genes was conserved in skeletal muscle of long‐term exercise‐trained humans; among these was muscle‐specific Abra/Stars. Myc is the OKSM factor most induced by exercise in muscle and was elevated following exercise training in aged mice. A pulse of MYC rewired the global soleus muscle methylome, and the transcriptome after a MYC pulse partially recapitulated OKSM induction. A common signature also emerged in the murine MYC‐controlled and exercise adaptation transcriptomes, including lower muscle‐specific Melusin and reactive oxygen species‐associated Romo1. With Myc, OKSM and exercise training in mice, as well habitual exercise in humans, the complex I accessory subunit Ndufb11 was lower; low Ndufb11 is linked to longevity in rodents. Collectively, exercise shares similarities with genetic in vivo partial reprogramming. Key points Advances in the last decade related to cellular epigenetic reprogramming (e.g. DNA methylome remodelling) toward a pluripotent state via the Yamanaka transcription factors Oct3/4, Klf4, Sox2 and Myc (OKSM) provide a window into potential mechanisms for combatting the deleterious effects of cellular ageing. Using global gene expression analysis, we compared the effects of in vivo OKSM‐mediated partial reprogramming in skeletal muscle fibres of mice to the effects of late‐life murine exercise training in muscle. Myc is the Yamanaka factor most induced by exercise in skeletal muscle, and so we compared the MYC‐controlled transcriptome in muscle to Yamanaka factor‐mediated and exercise adaptation mRNA landscapes in mice and humans. A single pulse of MYC is sufficient to remodel the muscle methylome. We identify partial reprogramming‐associated genes that are innately altered by exercise training and conserved in humans, and propose that MYC contributes to some of these responses.
There are functional benefits to exercise in muscle, even when performed late in life, but the contributions of epigenetic factors to late‐life exercise adaptation are poorly defined. Using reduced representation bisulfite sequencing (RRBS), ribosomal DNA (rDNA) and mitochondrial‐specific examination of methylation, targeted high‐resolution methylation analysis, and DNAge™ epigenetic aging clock analysis with a translatable model of voluntary murine endurance/resistance exercise training (progressive weighted wheel running, PoWeR), we provide evidence that exercise may mitigate epigenetic aging in skeletal muscle. Late‐life PoWeR from 22–24 months of age modestly but significantly attenuates an age‐associated shift toward promoter hypermethylation. The epigenetic age of muscle from old mice that PoWeR‐trained for eight weeks was approximately eight weeks younger than 24‐month‐old sedentary counterparts, which represents ~8% of the expected murine lifespan. These data provide a molecular basis for exercise as a therapy to attenuate skeletal muscle aging.
Obesity is a large and growing global health problem with few effective therapies. The present study investigated metabolic and physiological benefits of nicotinamide N-methyltransferase inhibitor (NNMTi) treatment combined with a lean diet substitution in diet-induced obese mice. NNMTi treatment combined with lean diet substitution accelerated and improved body weight and fat loss, increased whole-body lean mass to body weight ratio, reduced liver and epididymal white adipose tissue weights, decreased liver adiposity, and improved hepatic steatosis, relative to a lean diet substitution alone. Importantly, combined lean diet and NNMTi treatment normalized body composition and liver adiposity parameters to levels observed in age-matched lean diet control mice. NNMTi treatment produced a unique metabolomic signature in adipose tissue, with predominant increases in ketogenic amino acid abundance and alterations to metabolites linked to energy metabolic pathways. Taken together, NNMTi treatment’s modulation of body weight, adiposity, liver physiology, and the adipose tissue metabolome strongly support it as a promising therapeutic for obesity and obesity-driven comorbidities.
Cocaine use disorder (CUD) follows a trajectory of repetitive self-administration during which previously neutral stimuli gain incentive value. Cue reactivity, the sensitivity to cues previously linked with the drug-taking experience, plays a prominent role in human craving during abstinence. Cue reactivity can be assessed as the attentional orientation toward drug-associated cues that is measurable as appetitive approach behavior in both preclinical and human studies. Herein describes an assessment of cue reactivity in rats trained to self-administer cocaine. Cocaine self-administration is paired with the presentation of discrete cues that act as conditioned reinforcers (i.e., house light, stimulus light, infusion pump sounds). Following a period of abstinence, lever presses in the cocaine self-administration context accompanied by the discrete cues previously paired with cocaine infusion are measured as cue reactivity. This model is useful to explore neurobiological mechanisms underlying cue reactivity processes as well as to assess pharmacotherapies to suppress cue reactivity and therefore, modify relapse vulnerability. Advantages of the model include its translational relevance, and its face and predictive validities. The primary limitation of the model is that the cue reactivity task can only be performed infrequently and must only be used in short duration (e.g., 1 hour), otherwise rats will begin to extinguish the pairing of the discrete cues with the cocaine stimulus. The model is extendable to any positively reinforcing stimulus paired with discrete cues; though particularly applicable to drugs of abuse, this model may hold future applications in fields such as obesity, where palatable food rewards can act as positively reinforcing stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.