The corneal wound healing response, including the development of stromal opacity in some eyes, is a process that often leads to scarring that occurs after injury, surgery or infection to the cornea. Immediately after epithelial and stromal injury, a complex sequence of processes contributes to wound repair and regeneration of normal corneal structure and function. In some corneas, however, often depending on the type and extent of injury, the response may also lead to the development of mature vimentin+ α-smooth muscle actin+ desmin+ myofibroblasts. Myofibroblasts are specialized fibroblastic cells generated in the cornea from keratocyte-derived or bone marrow-derived precursor cells. The disorganized extracellular matrix components secreted by myofibroblasts, in addition to decreased expression of corneal crystallins in these cells, are central biological processes that result in corneal stromal fibrosis associated with opacity or “haze”. Several factors are associated with myofibroblast generation and haze development after PRK surgery in rabbits, a reproducible model of scarring, including the amount of tissue ablated, which may relate to the extent of keratocyte apoptosis in the early response to injury, irregularity of stromal surface after surgery, and changes on corneal stromal proteoglycans, but normal regeneration of the epithelial basement membrane (EBM) appears to be a critical factor determining whether a cornea heals with relative transparency or vision-limiting stromal opacity. Structural and functional abnormalities of the regenerated EBM facilitate prolonged entry of epithelium-derived growth factors such as transforming growth factor β (TGF-β) and platelet-derived growth factor (PDGF) into the stroma that both drive development of mature myofibroblasts from precursor cells and lead to persistence of the cells in the anterior stroma. A major discovery that has contributed to our understanding of haze development is that keratocytes and corneal fibroblasts, but not myofibroblasts, produce large amounts of critical EBM components, such as nidogen-1, nidogen-2 and perlecan, that are essential for complete regeneration of a normal EBM once laminin secreted by epithelial cells self-polymerizes into a nascent EBM. Mature myofibroblasts that become established in the anterior stroma are a barrier to keratocyte contributions to the nascent EBM. These myofibroblasts, and the opacity they produce, often persist for months or years after the injury. Transparency is subsequently restored when the EBM is completely regenerated, myofibroblasts are deprived of TGFβ and undergo apoptosis, and the keratocytes re-occupy the anterior stroma and reabsorb disordered extracellular matrix. The aim of this review is to highlight factors involved in the generation of stromal haze and its subsequent removal.
The corneal epithelial basement membrane (BM) is positioned between basal epithelial cells and the stroma. This highly specialized extracellular matrix functions not only to anchor epithelial cells to the stroma and provide scaffolding during embryonic development but also during migration, differentiation, and maintenance of the differentiated epithelial phenotype. Basement membranes are composed of a diverse assemblage of extracellular molecules, some of which are likely specific to the tissue where they function; but in general they are composed of four primary components--collagens, laminins, heparan sulfate proteoglycans, and nidogens--in addition to other components such as thrombospondin-1, matrilin-2, and matrilin-4 and even fibronectin in some BM. Many studies have focused on characterizing BM due to their potential roles in normal tissue function and disease, and these structures have been well characterized in many tissues. Comparatively few studies, however, have focused on the function of the epithelial BM in corneal physiology. Since the normal corneal stroma is avascular and has relatively low keratocyte density, it is expected that the corneal BM would be different from the BM in other tissues. One function that appears critical in homeostasis and wound healing is the barrier function to penetration of cytokines from the epithelium to stroma (such as transforming growth factor β-1), and possibly from stroma to epithelium (such as keratinocyte growth factor). The corneal epithelial BM is also involved in many inherited and acquired corneal diseases. This review examines this structure in detail and discusses the importance of corneal epithelial BM in homeostasis, wound healing, and disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.