Higher-order multi-protein complexes such as RNA polymerase II (Pol II) complexes with transcription initiation factors are often not amenable to X-ray structure determination. Here, we show that protein cross-linking coupled to mass spectrometry (MS) has now sufficiently advanced as a tool to extend the Pol II structure to a 15-subunit, 670 kDa complex of Pol II with the initiation factor TFIIF at peptide resolution. The N-terminal regions of TFIIF subunits Tfg1 and Tfg2 form a dimerization domain that binds the Pol II lobe on the Rpb2 side of the active centre cleft near downstream DNA. The C-terminal winged helix (WH) domains of Tfg1 and Tfg2 are mobile, but the Tfg2 WH domain can reside at the Pol II protrusion near the predicted path of upstream DNA in the initiation complex. The linkers between the dimerization domain and the WH domains in Tfg1 and Tfg2 are located to the jaws and protrusion, respectively. The results suggest how TFIIF suppresses non-specific DNA binding and how it helps to recruit promoter DNA and to set the transcription start site. This work establishes cross-linking/MS as an integrated structure analysis tool for large multi-protein complexes.
Very often, the positions of flexible domains within macromolecules as well as within macromolecular complexes cannot be determined by standard structural biology methods. To overcome this problem, we developed a method that uses probabilistic data analysis to combine single-molecule measurements with X-ray crystallography data. The method determines not only the most likely position of a fluorescent dye molecule attached to the domain but also the complete three-dimensional probability distribution depicting the experimental uncertainty. With this approach, single-pair fluorescence resonance energy transfer measurements can now be used as a quantitative tool for investigating the position and dynamics of flexible domains within macromolecular complexes. We applied this method to find the position of the 5¢ end of the nascent RNA exiting transcription elongation complexes of yeast (Saccharomyces cerevisiae) RNA polymerase II and studied the influence of transcription factor IIB on the position of the RNA.In recent years, high-resolution structural models of large macromolecular complexes such as the ribosome 1 , the RecBCD helicase 2 or RNA polymerases 3,4 have been obtained using X-ray crystallography. Although these structures provide detailed insight into the molecular architecture of complex biological systems, the position of flexible domains can usually not be determined because of averaging effects.Single-molecule methods, on the other hand, provide the possibility of directly obtaining structural information because they allow the study of real-time conformational changes of macromolecular complexes 5 . In combination with fluorescence resonance energy transfer (FRET) 6 , a technique that has been termed a molecular ruler 7 , one can in principle measure distances within a macromolecule in real-time. However, because of experimental problems such as variations in quantum yield 8 or dependence of FRET on the orientations of the two dye molecules 9 , there are few examples in the literature of quantitative distance measurements 8,10-12 or position determination 13-16 using single-pair FRET (sp-FRET). Instead, these data are more often interpreted in a qualitative fashion monitoring conformational changes and length increases or decreases [17][18][19][20] .Using triangulation of several FRET distance measurements, it is possible to determine a previously unknown position [13][14][15][16][21][22][23] . Although these experiments are able to estimate the most likely position, they do not show how existing experimental uncertainties might affect the position determined. Therefore, these positions must be interpreted with great caution because one has no information about the experimental accuracy. In principle, one can conduct control measurements that provide validity tests of the position determined 14 , but to arrive at a quantitative technique, experimental uncertainties must be taken into account.Here we used bayesian parameter estimation 21 , a probabilitybased analysis method, to compute the three-dimen...
The eukaryotic RNA polymerases Pol I, Pol II, and Pol III are the central multiprotein machines that synthesize ribosomal, messenger, and transfer RNA, respectively. Here we provide a catalog of available structural information for these three enzymes. Most structural data have been accumulated for Pol II and its functional complexes. These studies have provided insights into many aspects of the transcription mechanism, including initiation at promoter DNA, elongation of the mRNA chain, tunability of the polymerase active site, which supports RNA synthesis and cleavage, and the response of Pol II to DNA lesions. Detailed structural studies of Pol I and Pol III were reported recently and showed that the active center region and core enzymes are similar to Pol II and that strong structural differences on the surfaces account for gene class-specific functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.