CpG island hypermethylation and global genomic hypomethylation are common epigenetic features of cancer cells. Less attention has been focused on histone modifications in cancer cells. We characterized post-translational modifications to histone H4 in a comprehensive panel of normal tissues, cancer cell lines and primary tumors. Using immunodetection, high-performance capillary electrophoresis and mass spectrometry, we found that cancer cells had a loss of monoacetylated and trimethylated forms of histone H4. These changes appeared early and accumulated during the tumorigenic process, as we showed in a mouse model of multistage skin carcinogenesis. The losses occurred predominantly at the acetylated Lys16 and trimethylated Lys20 residues of histone H4 and were associated with the hypomethylation of DNA repetitive sequences, a well-known characteristic of cancer cells. Our data suggest that the global loss of monoacetylation and trimethylation of histone H4 is a common hallmark of human tumor cells.
Centromeres are essential for ensuring proper chromosome segregation in eukaryotes. Their definition relies on the presence of a centromere-specific H3 histone variant CenH3, known as CENP-A in mammals. Its overexpression in aggressive cancers raises questions concerning its effect on chromatin dynamics and contribution to tumorigenesis. We find that CenH3 overexpression in human cells leads to ectopic enrichment at sites of active histone turnover involving a heterotypic tetramer containing CenH3-H4 with H3.3-H4. Ectopic localization of this particle depends on the H3.3 chaperone DAXX rather than the dedicated CenH3 chaperone HJURP. This aberrant nucleosome occludes CTCF binding and has a minor effect on gene expression. Cells overexpressing CenH3 are more tolerant of DNA damage. Both the survival advantage and CTCF occlusion in these cells are dependent on DAXX. Our findings illustrate how changes in histone variant levels can disrupt chromatin dynamics and suggests a possible mechanism for cell resistance to anticancer treatments.
The present work investigates the occurrence and significance of aberrant DNA methylation patterns during early stages of atherosclerosis. To this end, we asked whether the genetically atherosclerosis-prone APOEnull mice show any changes in DNA methylation patterns before the appearance of histologically detectable vascular lesion. We exploited a combination of various techniques: DNA fingerprinting, in vitro methyl-accepting assay, 5-methylcytosine quantitation, histone posttranslational modification analysis, Southern blotting, and PCR. Our results show that alterations in DNA methylation profiles, including both hyper-and hypomethylation, were present in aortas and PBMC of 4-week-old mutant mice with no detectable atherosclerotic lesion. Sequencing and expression analysis of 60 leukocytic polymorphisms revealed that epigenetic changes involve transcribed genic sequences, as well as repeated interspersed elements. Furthermore, we showed for the first time that atherogenic lipoproteins promote global DNA hypermethylation in a human monocyte cell line. Taken together, our results unequivocally show that alterations in DNA methylation profiles are early markers of atherosclerosis in a mouse model and may play a causative role in atherogenesis.Atherosclerosis and its complications are a major cause of death and disability in the developed world. The disease is characterized by infiltration of lipid particles in the arterial wall, accompanied by the recruitment of inflammatory and immune cells, migration and proliferation of smooth muscle cells (SMC), 1 and synthesis of extracellular matrix. These processes eventually result in the gradual development of an elevated lipid-rich, fibrocellular lesion (1).In mammals, DNA methyltransferases use S-adenosyl methionine (SAM) as a methyl group donor to methylate the carbon in position 5 of cytosine residues in a CpG dinucleotide (CG) context (2). DNA methylation regulates fundamental biological phenomena such as gene expression, genome stability, mutation rate, genomic imprinting, and X chromosome inactivation (3-6). Both global and gene-specific alterations in DNA methylation are associated with abnormal phenotypes in disease (7,8). For example, cancer cells show global genomic hypomethylation and dense hypermethylation of CpG islands, which are normally unmethylated (9). The identification of cancer type-and stage-specific changes in DNA methylation has justified hopes for novel diagnostic and therapeutic avenues (10).Two general observations suggest that alterations in DNA methylation patterns are involved in atherogenesis (11-13). First, global hypomethylation and dense hypermethylation of certain CpG islands are associated with aging, a major risk factor for atherosclerosis (14). Second, hyperhomocysteinemia and the subsequent decreased production or bioavailability of SAM is associated with an increased risk of cardiovascular disease (15). Accordingly, mice with genetically reduced levels of methylenetetrahydrofolate reductase, a key enzyme in the pathway generating ...
Cancer is as much an epigenetic disease as it is a genetic and cytogenetic disease. The discovery that drastic changes in DNA methylation and histone modifications are commonly found in human tumors has inspired various laboratories and pharmaceutical companies to develop and study epigenetic drugs. One of the most promising groups of agents is the inhibitors of histone deacetylases (HDACs), which have different biochemical and biologic properties but have a single common activity: induction of acetylation in histones, the key proteins in nucleosome and chromatin structure. One of the main mechanisms of action of HDAC inhibitors is the transcriptional reactivation of dormant tumor-suppressor genes, such as p21 WAF1 . However, their pleiotropic nature leaves open the possibility that their wellknown differentiation, cell-cycle arrest and apoptotic properties are also involved in other functions associated with HDAC inhibition. Many phase I clinical trials indicate that HDAC inhibitors appear to be well-tolerated drugs. Thus, the field is ready for rigorous biologic and clinical scrutiny to validate the therapeutic potential of these drugs. Our current data indicate that the use of HDAC inhibitors, probably in association with classical chemotherapy drugs or in combination with DNA-demethylating agents, could be promising for cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.