One of the open problems of modern data mining is clustering high dimensional data. For this in the paper a new technique called GAHDClustering is proposed, which works in two steps. First a GA-based feature selection algorithm is designed to determine the optimal feature subset; an optimal feature subset is consisting of important features of the entire data set next, a K-means algorithm is applied using the optimal feature subset to find the clusters. On the other hand, traditional K-means algorithm is applied on the full dimensional feature space. Finally, the result of GA-HDClustering is compared with the traditional clustering algorithm. For comparison different validity matrices such as Sum of squared error (SSE), Within Group average distance (WGAD), Between group distance (BGD), Davies-Bouldin index(DBI), are used .The GA-HDClustering uses genetic algorithm for searching an effective feature subspace in a large feature space. This large feature space is made of all dimensions of the data set. The experiment performed on the standard data set revealed that the GA-HDClustering is superior to traditional clustering algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.