Neurotrophins are target-derived factors necessary for mammalian nervous system development and maintenance. They are typically produced by neuronal target tissues and interact with their receptors at axonal endings. Therefore, locally generated neurotrophin signals must be conveyed from the axon back to the cell soma. Retrograde survival signaling by neurotrophin binding to Trk receptors has been extensively studied. However, neurotrophins also bind to the p75 receptor, which can induce apoptosis in a variety of contexts. Selective activation of p75 at distal axon ends has been shown to generate a retrograde apoptotic signal, although the mechanisms involved are poorly understood. The present review summarizes the available evidence for retrograde proapoptotic signaling in general and the role of the p75 receptor in particular, with discussion of unanswered questions in the field. In-depth knowledge of the mechanisms of retrograde apoptotic signaling is essential for understanding the etiology of neurodegeneration in many diseases and injuries.
Inadequate maternal intake of omega-3-fatty acids (omega3 FAs) causes adverse neurodevelopmental outcome in the progeny; however, their molecular mechanism of action is obscure. Since omega3 FAs are known to inhibit neuronal apoptosis during neuro-degeneration, we investigated their possible contribution in regulating neuronal apoptosis during brain development. Using rat model of hypothyroidism-induced neuronal apoptosis, we provide evidence for anti-apoptotic role of omega3 FAs during cerebellar development. omega3 FAs were supplemented as a mixture of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) to pregnant and lactating rats, and primary hypothyroidism was induced by administering methimazole. The cerebella from postnatal day 16 (d16) pups were isolated, and studies on apoptosis were conducted. We observed that omega3 FA-supplementation significantly reduced DNA fragmentation and caspase-3 activation in developing cerebellum of hypothyroid pups. The protection provided by omega3 FAs was associated with their ability to prevent increases in the level of pro-apoptotic basal cell lymphoma protein-2 (Bcl-2)-associated X protein (Bax) in the cerebellum during thyroid hormone (TH) deficiency. omega3 FAs increased the levels of anti-apoptotic proteins like Bcl-2 and Bcl-extra large (Bcl-x(L)), known to be repressed in hypothyroidism. omega3 FAs also restored levels of cerebellar phospho (p)-AKT, phospho-extracellular regulated kinase (p-ERK) and phospho-c-Jun N-terminal kinase (p-JNK), which were altered by hypothyroid insults, without interfering with the expression of TH responsive gene, myelin basic protein (mbp). Taken together, these results supplement an insight into the molecular mechanism of action of omega3 FAs in developing brain that involves regulation of apoptotic signaling pathways under stress.
This study demonstrates that integrin α3β1 interactions with both α3- and α5-containing laminins regulate ureteric bud (UB) development by functionally modulating the Akt signaling pathway. In addition, the work done shows that K63-linked polyubiquitination plays a previously unrecognized role in integrin α3β1–dependent cell signaling required for UB development and that this may be a novel general mechanism whereby integrins regulate signaling pathways.
Background:The p75 neurotrophin receptor (p75 NTR ) promotes neurodegeneration during development and in response to cellular injury. Results: Reactive oxygen species promoted cleavage of p75 NTR , leading to axonal degeneration and apoptosis. Conclusion: Oxidative stress activates intracellular p75 NTR signaling to induce neurodegeneration. Significance: These results suggest a novel mechanism through which p75 NTR contributes to neurodegeneration associated with cellular injury or pathological conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.