Background. Antimicrobial resistance among community-acquired uropathogens is an emerging concern over the past decades that warrants a continuing reevaluation of the appropriateness of recommended empiric antimicrobial regimens for treatment of urinary tract infections (UTIs). Aims. To describe the microbial spectrum and resistance profile of community-acquired uropathogens and predictors of isolation of resistant strains. Methods. Between October 2017 and June 2019, individuals who visited the outpatient clinics for diagnosis of UTIs or screening of asymptomatic bacteriuria were included in the study if they were tested for urine culture in one of the three main medical diagnostic laboratories of Mashhad, Iran. The standard disk diffusion antimicrobial susceptibility testing was used, with the Clinical and Laboratory Standards Institute (CLSI) threshold cutoffs for susceptibility of isolated uropathogens. Results. Three hundred thirty cases were included with a median age of 47 years. Two hundred seventy-six (83.6%) were female. The most common isolated uropathogens were Escherichia coli in 201 (60.9%) cases and Klebsiella species in 46 (13.9%) cases. E. coli isolates showed the highest rates of susceptibility to nitrofurantoin (89.3%), cefixime (75%), and gentamicin (72.4%). Exposure to antibiotics in the past 3 months was a predictor of resistance to ciprofloxacin (OR: 2.8, 95% CI: 1.33–6.28), and older age was a predictor of resistance to TMP-SMX (OR: 2.1, 95% CI: 1.07–3.97) among E. coli isolates. Conclusion. E. coli and Klebsiella species accounted for about two-thirds of community-acquired uropathogens. In regard to the high susceptibility rates, nitrofurantoin was identified as the first-choice agent for empiric treatment of community-acquired cystitis, while cefixime and gentamicin might be the second-choice alternatives. Ciprofloxacin and TMP-SMX, on the other hand, cannot be considered appropriate agents for empiric therapy of community-acquired UTIs, particularly in those who had exposure to antibiotics in the past 3 months and the elderly.
Background. Current drugs used in the management of insomnia are associated with side effects. The use of medicinal herbs for insomnia treatment has recently been suggested. Objective. The present study aimed to determine the hypnotic activity of the hydroalcoholic extract of Artemisia absinthium (A. absinthium) in mice. Method. The toxicity of A. absinthium extract is assessed by their lethal dose 50% (LD50), and cytotoxicity evaluation was also done with PC12 cell lines by MTT assay. A. absinthium extract (25, 50, 100, and 200 mg/kg) and 3 fractions (n-butanol fraction (NBF), ethyl acetate fraction (EAF), and aqueous fraction (AQF)) were administered intraperitoneally30 minutes before 30 mg/kg pentobarbital intraperitoneal injection; after that, the sleeping time and sleep latency were recorded. Results. The LD50 value was 2.4 g/kg. The extracts tested showed no negative effect on the proliferation of PC12 cells. A. absinthium extract increased the duration of pentobarbital-induced sleep at doses of 100 and 200 mg/kg ( P < 0.01 - P < 0.001 ). Similarly, AQF, EAF, and NBF at 200 mg/kg could increase sleep duration ( P < 0.05 ). The sleep latency was decreased by A. absinthium extract at doses of 100 and 200 mg/kg ( P < 0.05 - P < 0.01 ), AQF ( P < 0.05 ), and EAF (P < 0.05). Besides, flumazenil reversed the hypnotic effect of A. absinthium extract ( P < 0.05 ). Conclusion. A. absinthium extract probably demonstrated sleep-enhancing effects by regulating GABAergic system.
Background: Alzheimer disease (AD) is a progressive neurodegenerative disease leading to neuronal cell death and manifested by cognitive disorders and behavioral impairment. Mesenchymal stem cells (MSCs) are one of the most promising candidates to stimulate neuroregeneration and prevent disease progression. Optimization of MSC culturing protocols is a key strategy to increase the therapeutic potential of the secretome. Objectives: Here, we investigated the effect of brain homogenate of a rat model of AD (BH-AD) on the enhancement of protein secretion in the secretome of periodontal ligament stem cells (PDLSCs) when cultured in a 3D environment. Moreover, the effect of this modified secretome was examined on neural cells to study the impact of the conditioned medium (CM) on stimulation of regeneration or immunomodulation in AD. Methods: PDLSCs were isolated and characterized. Then, the spheroids of PDLSCs were generated in a modified 3D culture plate. PDLSCs-derived CM was prepared in the presence of BH-AD (PDLSCs-HCM) and the absence of it (PDLSCs-CM). The viability of C6 glioma cells was assessed after exposure to different concentrations of both CMs. Then, a proteomic analysis was performed on the CMs. Results: Differentiation into adipocytes and high expression of MSCs markers verified the precise isolation of PDLSCs. The PDLSC spheroids were formed after 7 days of 3D culturing, and their viability was confirmed. The effect of CMs on C6 glioma cell viability showed that both CMs at low concentrations (> 20 mg/mL) had no cytotoxic effect on C6 neural cells. The results showed that PDLSCs-HCM contains higher concentrations of proteins compared to PDLSCs-CM, including Src-homology 2 domain (SH2)-containing PTPs (SHP-1) and muscle glycogen phosphorylase (PYGM) proteins. SHP-1 has a role in nerve regeneration, and PYGM is involved in glycogen metabolism. Conclusions: The modified secretome derived from 3D cultured spheroids of PDLSCs treated by BH-AD as a reservoir of regenerating neural factors can serve as a potential source for AD treatment.
Nanoparticles (NPs) based therapies for Alzheimer's disease (AD) attract interest due to their ability to pass across or bypass the blood‐brain barrier. Chitosan (CS) NPs or graphene quantum dots (GQDs) are promising drug carriers with excellent physicochemical and electrical properties. The current study proposes the combination of CS and GQDs in ultrasmall NP form not as drug carriers but as theranostic agents for AD. The microfluidic‐based synthesis of the CS/GQD NPs with optimized characteristics makes them ideal for transcellular transfer and brain targeting after intranasal (IN) delivery. The NPs have the ability to enter the cytoplasm of C6 glioma cells in vitro and show dose and time‐dependent effects on the viability of the cells. IN administration of the NPs to streptozotocin (STZ) induced AD‐like models lead to a significant number of entrances of the treated rats to the target arm in the radial arm water maze (RAWM) test. It shows the positive effect of the NPs on the memory recovery of the treated rats. The NPs are detectable in the brain via in vivo bioimaging due to GQDs as diagnostic markers. The noncytotoxic NPs localize in the myelinated axons of hippocampal neurons. They do not affect the clearance of amyloid β (Aβ) plaques at intercellular space. Moreover, they showed no positive impact on the enhancement of MAP2 and NeuN expression as markers of neural regeneration. The memory improvement in treated AD rats may be due to neuroprotection via the anti‐inflammation effect and regulation of the brain tissue microenvironment that needs to be studied.
The role of the lateral habenula (LHb) as a hub for receiving and relaying signals from the limbic system to serotonergic, dopaminergic, and norepinephrinergic regions in the brainstem makes this area a critical region in the control of reward and addiction. Behavioral evidence reveals the vital role of the LHb in negative symptoms during withdrawal. In this investigation, we study the role of the LHb N-Methyl D-Aspartate receptor (NMDAR) in the modulation of tramadol reward. Male adult Wistar rats were used in this study. The effect of intra-LHb micro-injection of NMDAR agonist (NMDA, 0.1, 0.5, 2 µg/rat) and antagonist (D-AP5, 0.1, 0.5, 1 µg/rat) was evaluated in conditioned place preference (CPP) paradigm. The obtained results showed that intra-LHb administration of NMDA induced place aversion dose-dependently, while blockade of NMDAR in the LHb using D-AP5 micro-injection led to an increased preference score in the CPP task. Co-administration of NMDA (0.5 µg/rat) with tramadol (4 mg/kg) reduced preference score, while co-administration of D-AP5 (0.5 µg/rat) with a non-effective dose of tramadol (1 mg/kg) potentiate the rewarding effect of tramadol. LHb receives inputs from the limbic system and projects to the monoaminergic nuclei in the brainstem. It has been declared that NMDAR is expressed in LHb, and as obtained data revealed, these receptors could modulate the rewarding effect of tramadol. Therefore, NMDA receptors in the LHb might be a new target for modulating tramadol abuse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.