Image deconvolution and reconstruction are inverse problems which are encountered in a wide array of applications. Due to the ill-posedness of such problems, their resolution generally relies on the incorporation of prior information through regularizations, which may be formulated in the original data space or through a suitable linear representation. In this article, we show the benefits which can be drawn from frame representations, such as wavelet transforms. We present an overview of recovery methods based on these representations: (i) variational formulations and non-smooth convex optimization strategies, (ii) Bayesian approaches, especially Monte Carlo Markov Chain methods and variational Bayesian approximation techniques, and (iii) Stein-based approaches. A brief introduction to blind deconvolution is also provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.