The design of high-performance combustion chambers for gas turbine engines is considered one of the difficult tasks for engineers. This study presents the design of a can-type combustion chamber. The parametric cycle analysis of a low bypass turbofan engine (AL-31F) was provided to obtain the air properties at the combustor inlet. Empirical equations are used to determine the dimensions of the combustion chamber. GAMBIT software was used to create the combustor model and the simulation was accomplished using ANSYS software. This CFD code is a steady, quasi-three-dimensional Reynolds Averaged Navier-Stokes (RANS) solver. K-w viscous model and non-premixed combustion model are used. Presented the results of cycle analysis of the turbofan engine and the dimensions of combustor components and cooling holes. An analysis of the distribution of temperature, pressure, and velocity throughout the combustion chamber is provided. The obtained results were compared for analytical and computational approaches and suggested with previous studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.