The zinc finger transcription factor Helios is critical for maintaining the identity, anergic phenotype, and suppressive activity of regulatory T cells. While it is an attractive target to enhance the efficacy of currently approved immunotherapies, no existing approaches can directly modulate Helios activity or abundance. Here, we report the structure-guided development of small molecules that recruit the E3 ubiquitin ligase substrate receptor Cereblon to Helios, thereby promoting its degradation. Pharmacological Helios degradation destabilized the anergic phenotype and reduced the suppressive activity of regulatory T cells, establishing a route towards Helios-targeting therapeutics. More generally, this study provides a framework for the development of small molecule degraders for previously unligandable targets by reprogramming E3 ligase substrate specificity.
In-frame insertions in exon 20 of HER2 are the most common HER2 mutations in patients with non–small cell lung cancer (NSCLC), a disease in which approved EGFR/HER2 tyrosine kinase inhibitors (TKI) display poor efficiency and undesirable side effects due to their strong inhibition of wild-type (WT) EGFR. Here, we report a HER2-selective covalent TKI, JBJ-08–178–01, that targets multiple HER2 activating mutations, including exon 20 insertions as well as amplification. JBJ-08–178–01 displayed strong selectivity toward HER2 mutants over WT EGFR compared with other EGFR/HER2 TKIs. Determination of the crystal structure of HER2 in complex with JBJ-08–178–01 suggests that an interaction between the inhibitor and Ser783 may be responsible for HER2 selectivity. The compound showed strong antitumoral activity in HER2-mutant or amplified cancers in vitro and in vivo. Treatment with JBJ-08–178–01 also led to a reduction in total HER2 by promoting proteasomal degradation of the receptor. Taken together, the dual activity of JBJ-08–178–01 as a selective inhibitor and destabilizer of HER2 represents a combination that may lead to better efficacy and tolerance in patients with NSCLC harboring HER2 genetic alterations or amplification. Significance: This study describes unique mechanisms of action of a new mutant-selective HER2 kinase inhibitor that reduces both kinase activity and protein levels of HER2 in lung cancer.
Janus Kinases (JAKs) have emerged as an important drug target for the treatment of a number of immune disorders due to the central role that they play in cytokine signalling. 4 isoforms of JAKs exist in mammalian cells and the ideal isoform profile of a JAK inhibitor has been the subject of much debate. JAK3 has been proposed as an ideal target due to its expression being largely restricted to the immune system and its requirement for signalling by cytokine receptors using the common γ-chain. Unlike other JAKs, JAK3 possesses a cysteine in its ATP binding pocket and this has allowed the design of isoform selective covalent JAK3 inhibitors targeting this residue. We report here that mutating this cysteine to serine does not prevent JAK3 catalytic activity but does greatly increase the IC50 for covalent JAK3 inhibitors. Mice with a Cys905Ser knockin mutation in the endogenous JAK3 gene are viable and show no apparent welfare issues. Cells from these mice show normal STAT phosphorylation in response to JAK3 dependent cytokines but are resistant to the effects of covalent JAK3 inhibitors. These mice therefore provide a chemical-genetic model to study JAK3 function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.