Ribosomal DNA (rDNA) loci contain hundreds of tandemly repeated copies of ribosomal RNA genes needed to support cellular viability. This repetitiveness makes it highly susceptible to copy number (CN) loss due to intrachromatid recombination between rDNA copies, threatening multigenerational maintenance of rDNA. How this threat is counteracted to avoid extinction of the lineage has remained unclear. Here, we show that the rDNA-specific retrotransposon R2 is essential for restorative rDNA CN expansion to maintain rDNA loci in the Drosophila male germline. The depletion of R2 led to defective rDNA CN maintenance, causing a decline in fecundity over generations and eventual extinction. We find that double-stranded DNA breaks created by the R2 endonuclease, a feature of R2’s rDNA-specific retrotransposition, initiate the process of rDNA CN recovery, which relies on homology-dependent repair of the DNA break at rDNA copies. This study reveals that an active retrotransposon provides an essential function for its host, contrary to transposable elements’ reputation as entirely selfish. These findings suggest that benefiting host fitness can be an effective selective advantage for transposable elements to offset their threat to the host, which may contribute to retrotransposons’ widespread success throughout taxa.
Ribosomal RNAs (rRNAs) account for 80-90% of all transcripts in eukaryotic cells1. To meet this demand, the ribosomal DNA (rDNA) gene that codes for rRNA is tandemly repeated hundreds of times, comprising rDNA loci on eukaryotic chromosomes2–6. This repetitiveness imposes a challenge to maintaining sufficient copy number due to spontaneous intra-chromatid recombination between repetitive units causing copy number loss7. The progressive shrinking of rDNA loci from generation to generation could lead to extinction of the lineage8, yet the mechanism(s) to counteract spontaneous copy number loss remained unclear. Here, we show that the rDNA-specific retrotransposon R2 is essential for rDNA copy number (CN) maintenance in the Drosophila male germline, despite the perceived disruptive nature of transposable elements. Depletion of R2 led to defective rDNA CN maintenance in multiple contexts, causing a decline in fecundity over generations and eventual extinction of the lineage. Our data suggests that DNA double strand breaks generated by R2 is the initiating event of rDNA CN expansion, stimulating the repair processes proposed to underlie rDNA CN expansion9. This study reveals that retrotransposons can provide a benefit to their hosts, contrary to their reputation as genomic parasitic, which may contribute to their widespread success throughout taxa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.