Oxidative stress is an important contributor to the pathophysiology of sickle cell disease. The pathways involved are complex and interlinked. L-glutamine is an amino acid with myriad roles in the body, including the synthesis of antioxidants, such as reduced glutathione and the cofactors NAD(H) and NADP(H), as well as nitric oxide—so it has therapeutic potential as an antioxidant. However, the relative impact of L-glutamine on the redox environment in red blood cells in sickle cell disease is not fully understood, and there are few therapeutic trials in sickle cell disease. Following the FDA approval of L-glutamine for sickle cell disease, more research is still needed to understand its clinical effects and role in therapy. Impact statement L-glutamine has been recently approved by the FDA for the prevention of acute complications in sickle cell disease (SCD). However, there are many gaps in our understanding of the biologic role of glutamine and its therapeutic implications in SCD. This review summarizes the pre-clinical and clinical evidence that can inform clinical decision-making and future research on glutamine therapy in SCD patients.
IntroductionSideroblastic cardiomyopathy secondary to repeated blood transfusions is a feared complication in thalassaemia. Control of myocardial iron is thus becoming the cornerstone of thalassaemia management. Recent evidence suggests a role for L-type Ca2+ channels in mediating iron uptake by the heart. Blocking the cellular iron uptake through these channels may add to the benefit of therapy to standard chelation in reducing myocardial iron. We aim to determine the efficacy of amlodipine (a calcium channel blocker) as an adjunct to standard aggressive chelation in retarding myocardial iron deposition in thalassaemics with or without cardiomyopathy.OutcomesThe primary outcome is to compare the efficacy of amlodipine+chelation (intervention) versus standard chelation (control) in retarding myocardial iron deposition. Secondary outcomes include the effect of amlodipine therapy on systolic and diastolic function, strain and strain rate and liver iron content.Methods and analysisThis is a single-centre, parallel-group, prospective randomised control trial. Twenty patients will be randomised in a 1:1 allocation ratio into the intervention and control arms. In addition to conventional echocardiography, MRI T2* values for assessment of cardiac and liver iron load will be obtained at baseline and at 6 and 12 months. Cardiac T2* will be reported as the geometric mean and per cent coefficient of variation, and an increase in cardiac T2* values from baseline will be used as an end point to compare the efficacy of therapy. A p Value of <0.05 will be considered significant.Study settingDepartment of Pediatric and Child Health, Aga Khan University Hospital, Karachi, Pakistan.Ethics and disseminationThis study has been approved by the Ethics Review Committee and Clinical Trials Unit at The Aga Khan University with respect to scientific content and compliance with applicable research and human subjects regulations. Findings will be reported through scientific publications and research conferences and project summary papers for participants.Trial registration numberClinicalTrials.Gov. Registration no: NCT02065492.
The available evidence does not clearly suggest that the use of calcium channel blockers is associated with a reduction in myocardial iron in people with transfusion-dependent beta thalassaemia, although a potential for this was seen. There is a need for more long-term, multicentre trials to assess the efficacy and safety of calcium channel blockers for myocardial iron overload, especially in younger children. Future trials should be designed to compare commonly used iron chelation drugs with the addition of calcium channel blockers to investigate the potential interplay of these treatments. In addition, the role of baseline myocardial iron content in affecting the response to calcium channel blockers should be investigated. An analysis of the cost-effectiveness of the treatment is also required.
Sickle cell anemia (SCA) is a hereditary hemoglobinopathy with a variable phenotype. There is no single biomarker that adequately predicts disease severity and can be used to monitor treatment response in patients in clinical trials and clinical care. The use of clinical outcomes, such as vaso-occlusive crises (VOC), requires long and expensive studies, sometimes with inconclusive results. To address these limitations, there are several biomarkers under study to improve the ability to predict complications and assess treatment response in both clinical and research settings. Oxygen gradient ektacytometry, also called as oxygenscan, is an assay that measures the effects of deoxygenation and reoxygenation on red blood cell (RBC) deformability and is gaining popularity in SCA research, because it captures the dynamic sickling capacity of a patient’s RBCs as they are subjected to an oxygen gradient under steady shear stress. We describe here the oxygenscan methodology and evaluate the correlation between oxygenscan parameters and more well-known biomarkers of SCA such as fetal hemoglobin (HbF), F-cells, and dense red blood cells (DRBCs). Our data indicate that the oxygenscan curve is affected by all these parameters and the result incorporates the effects of %HbF, %F-cells, RBC hydration, and RBC membrane deformability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.