During the last era in India, the use of chemical fertilizer has increased tremendously. The excessive use of these chemicals leads to the degradation of soil quality, health, as well as nutritional status. These are also causing a degradation of human health. This experiment was conducted during Mrig Bahar (July to December) during two consecutive years (2019–2020)in a randomized block design with three replications in which six-year-old 42 pomegranate plants were tested with 14 treatments of different organic manures. Findings showed that in the various treatments, the organic combination T13-Jeevamrut 16.08 L plant-1 + Vermicompost 24.79 kg plant-1 had a significant effect on the nutritional status (available nitrogen, available phosphorus, and available potassium) and microbial population (fungi, bacterial, and actinomycetes count). In addition, T13-Jeevamrut 16.08 L plant-1 + Vermicompost 24.79 kg plant-1 found a significant effect on fruit yield characteristics like fruit plant-1 (122.00), fruit yield (17.38 kg plant-1), fruit weight (192.50 g) and fruit quality characteristics such as fruit juice percent (52.92%), and total sugar (11.92%).
In an attempt to construct superior Trichoderma harzianum isolates for improvement β-glucosidase productivity, induction of mutants was applied. After application of UV irradiation and Ethyl methane sulfonate (EMS), 461 isolates were obtained, out of them 99 after UV application and 362 isolates after EMS treatments. Five isolates (two after UV application and three after EMS treatments) were selected on the basis of their highly productivity of both enzymes to be treated with doses of colchicine (0.1% and 0.2%) as a second step of induction mutation. After colchicine treatments, 191 isolates were obtained, out of them 40 isolates after treating the wild type strain, 70 isolates after treating the two UV induced-mutants with colchicine and 81 isolates after treating the three EMS induced-mutants with colchicine .These isolates were tested for their CMCase and β-glucosidase productivities. One isolate (D1/4) proved to be the highest producer for the two enzymes, since it produced 160% and 186% CMCase and β-glucosidase, respectively, more than the original strain. In addition, highest DNA content and also highest amounts of CMCase and β-glucosidase were obtained after EMS-treatments followed by colchicine application.
The current study investigated how different fasting and refeeding regimes would impact Nile tilapia growth performance, histopathological examination, and gene expression of myostatin, myogenin, GH, IGF-1, and NPYa. Nile tilapia fish (n = 120) were randomly allocated into four groups, including the control group fed on a basal diet for 6 weeks (F6), group A starved for 1 week and then refed for 5 weeks (S1F5), group B starved for 2 weeks and then refed for 4 weeks (S2F4), while group C starved for 4 weeks and then refed for 2 weeks (S4F2). Fasting provoked a decrease in body weight coincided with more extended starvation periods. Also, it induced muscle and liver histological alterations; the severity was correlated with the length of fasting periods. Gene expression levels of GH, MSTN, MYOG, and NPYa were significantly increased, while IGF1 was markedly depressed in fasted fish compared to the control group. Interestingly, refeeding after well-planned short fasting period (S1F5) modulated the histopathological alterations. To some extent, these changes were restored after refeeding. Restored IGF-I and opposing fasting expression profiles of the genes mentioned above thus recovered weights almost like the control group and achieved satisfactory growth compensation. Conversely, refeeding following more extended fasting periods failed to restore body weight. In conclusion, refeeding after fasting can induce a compensatory response. Still, the restoration capacity is dependent on the length of fasting and refeeding periods through exhibiting differential morphological structure and expressions pattern for muscle and growth-related genes. Graphical abstract
Understanding nitrogen (N) release patterns and kinetics is a key challenge for improving N use efficiency in any agroecosystem. An incubation experiment was done to study the N release pattern and kinetics of contrasting soils amended with compost (CO), poultry manure (PM), rice husk biochar (RHB), poultry manure biochar (PMB) and cowdung (CD) combined with chemical fertilizer (integrated plant nutrient system, IPNS approach) under two moisture regimes, viz. field capacity (FC) and continuous standing water (CSW) at 25 °C for 120 days. Our results revealed that NH4+-N was the dominant under CSW conditions, whereas NO3−-N was dominant under FC conditions. Net mineral N data fitted well to the first order kinetic model. Both N release potential (N0) and rate constant (k) were greater in acidic soil than those of charland soil. The maximum N release varied between 24.90–76.29% of input depending on soil type and moisture status. N mineralization was strongly correlated with urea N application. PM and PMB mineralized in all soil and moisture conditions whereas N immobilization was observed in the case of RHB. N mineralization was strongly correlated with urea N application. Gaseous N losses were different for the organic amendments exhibiting more gaseous N losses in PM, CD and CO based IPNS whereas the lowest gaseous N loss was observed in PMB based IPNS. Biochar based IPNS increased soil pH in all conditions. Thus, the present study suggests that N release depends on soil type, soil moisture and type of organic amendment. However, CO, PM and CD based IPNS can be recommended for both acidic and charland soils in terms of N release as short duration crops will suffer from N deficiency if biochar based IPNS is used in the field.
Mycoplasma bovis is one of the important pathogens in mycoplasma types that cause disease in cattle. The young calves from one to four months of age are most likely to develop pneumonia caused by M. bovis. In this study, we isolated M. bovis from tracheal swabs of cattle which showed respiratory symptoms. A total of about 100 tracheal swab samples were collected from cattle in Kafer El-Shikh slaughterhouse, Egypt. The collected samples from cattle were between 3-12 months of age. Mycoplasma bovis was identification in tracheal swab samples by using 16S rDNA gene sequencing and biotyping by using rep-PCR, respectively. The microbiological method could not give positive results, while the PCR showed that M. bovis infections were positive in 16 different cattle samples with about 16%. The partial sequences of the 16S rRNA genes of the Mycoplasma isolates were obtained and phylogeny tree showed that Sixteen Mycoplasma isolates were identified into Mycoplasma bovis. the similarity to Mycoplasma bovis MYC 84, M. bovis L22 and M. bovis MYC 76 was 100, 99 and 95%, respectively. The ten Rep-PCR primers produced about 139 fragments, 53.3% of them consider as monomorphic and 46.7% of them consider as polymorphic bands. According to genetic similarity and intraspecies differentiation, the sixteen Mycoplasma isolates were grouped into two main different clusters with about 60% genetic similarity in genetics dendrogram. These results suggest that PCR technique is a specific molecular detection technique identified to determine Mycoplasma and It is easy and fast methods to detect and isolate infected animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.