We investigate a spatially discrete surrogate model for the dynamics of a slender, elastic, inextensible fiber in turbulent flows. Deduced from a continuous space-time beam model for which no solution theory is available, it consists of a high-dimensional second order stochastic differential equation in time with a nonlinear algebraic constraint and an associated Lagrange multiplier term. We establish a suitable framework for the rigorous formulation and analysis of the semi-discrete model and prove existence and uniqueness of a global strong solution. The proof is based on an explicit representation of the Lagrange multiplier and on the observation that the obtained explicit drift term in the equation satisfies a one-sided linear growth condition on the constraint manifold. The theoretical analysis is complemented by numerical studies concerning the time discretization of our model. The performance of implicit Euler-type methods can be improved when using the explicit representation of the Lagrange multiplier to compute refined initial estimates for the Newton method applied in each time step
In this paper we derive asymptotically the macroscopic bulk stress of a suspension of small inertial particles in an incompressible Newtonian fluid. We apply the general asymptotic framework to the special case of ellipsoidal particles and show the resulting modification due to inertia on the well-known particle-stresses based on the theory by Batchelor and Jeffery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.