The current push toward lightweight structures in aerospace and aeronautical engineering is leading to slender design airfoils, which are more likely to undergo large deformation, hence experiencing geometrical nonlinearities. The problem of vibration localization in a rotor constituted by N coupled airfoils with plunge and pitch degrees of freedom subjected to flutter instability is considered. For a single airfoil, it is shown that depending on the system parameters, multiple static and dynamic equilibria coexist which may be a fixed point, a limit cycle, or irregular motion. By elastically coupling N airfoils, a simplified rotor model is obtained. The nonlinear dynamical response of the rotor is studied via time integration with particular attention to the emergence of localized vibrating solutions, which have been classified introducing a localization coefficient. Finally, the concept of basin stability is exploited to ascertain the likelihood of the system to converge to a certain localized state as a function of the airstream velocity. We found that homogeneous and slightly localized states are more likely to appear with respect to strongly localized states.
Flow through mechanical aortic valves (MAVs) has been constantly associated to higher haemolysis and platelet activation levels with respect to native valves, due to non-physiologic haemodynamic features. Both computational and experimental investigations have correlated the blood damage to augmented levels of turbulent stress downstream of MAVs. This study provides a computational estimation, drawn from high-resolution direct numerical simulations, of turbulent and fluctuating viscous stresses in three different MAV configurations, at subsequent stages of the cardiac cycle. The configurations comprise a St. Judes Medical Regent valve (SJMV), a Lapeyre-Triflo FURTIVA valve (LTFV) with three leaflets, and a SJMV with vortex generators (VGs). Non-standard configurations are expected to mitigate the mean stress level on blood constituents reducing the turbulent production. Computations are carried out by means of a finite-difference flow solver with a direct-forcing immersed boundary technique to handle fixed and moving bodies. The VGs are found to provide instabilities which corrupt the Kármán-like vortex shedding downstream of the leaflets, reducing the intensity of turbulent kinetic energy at the peak flow rate, thus lowering the local Reynolds shear stress. Conversely, the LTFV configuration provides comparable haemodynamic performance at peak flow rate but further reduced stress level in the deceleration phase. These interpretations are supported by probability density distributions from three-dimensional fields, and further corroborated by a pointwise mapping of the Taylor length scale and local energy spectra. The outcomes of this study might potentially be exploited to improve the design of new-generation MAVs, with the aim of decreasing the risk of thromboembolic complications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.