We report numerical studies of the linear and nonlinear edge dynamics of a non-harmonically confined macroscopic fractional quantum Hall fluid. In the long-wavelength and weak excitation limit, observable consequences of the fractional transverse conductivity are recovered. The first non-universal corrections to the chiral Luttinger liquid theory are then characterized: for a weak excitation in the linear response regime, cubic corrections to the linear wave dispersion and a broadening of the dynamical structure factor of the edge excitations are identified; for stronger excitations, sizable nonlinear effects are found in the dynamics. The numerically observed features are quantitatively captured by a nonlinear chiral Luttinger liquid quantum Hamiltonian that reduces to a driven Korteweg-de Vries equation in the semiclassical limit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.